Actual source code: hipsparsematimpl.h

  1: /* Portions of this code are under:
  2:    Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
  3: */
  4: #ifndef PETSC_HIPSPARSEMATIMPL_H
  5: #define PETSC_HIPSPARSEMATIMPL_H

  7: #include <petscpkg_version.h>
  8: #include <petsc/private/hipvecimpl.h>
  9: #include <petscaijdevice.h>

 11: #if PETSC_PKG_HIP_VERSION_GE(5, 2, 0)
 12:   #include <hipsparse/hipsparse.h>
 13: #else /* PETSC_PKG_HIP_VERSION_GE(5,2,0) */
 14:   #include <hipsparse.h>
 15: #endif /* PETSC_PKG_HIP_VERSION_GE(5,2,0) */
 16: #include "hip/hip_runtime.h"

 18: #include <algorithm>
 19: #include <vector>

 21: #include <thrust/device_vector.h>
 22: #include <thrust/device_ptr.h>
 23: #include <thrust/device_malloc_allocator.h>
 24: #include <thrust/transform.h>
 25: #include <thrust/functional.h>
 26: #include <thrust/sequence.h>
 27: #include <thrust/system/system_error.h>

 29: #define PetscCallThrust(body) \
 30:   do { \
 31:     try { \
 32:       body; \
 33:     } catch (thrust::system_error & e) { \
 34:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "Error in Thrust %s", e.what()); \
 35:     } \
 36:   } while (0)

 38: #if defined(PETSC_USE_COMPLEX)
 39:   #if defined(PETSC_USE_REAL_SINGLE)
 40: const hipComplex PETSC_HIPSPARSE_ONE  = {1.0f, 0.0f};
 41: const hipComplex PETSC_HIPSPARSE_ZERO = {0.0f, 0.0f};
 42:     #define hipsparseXcsrilu02_bufferSize(a, b, c, d, e, f, g, h, i)  hipsparseCcsrilu02_bufferSize(a, b, c, d, (hipComplex *)e, f, g, h, i)
 43:     #define hipsparseXcsrilu02_analysis(a, b, c, d, e, f, g, h, i, j) hipsparseCcsrilu02_analysis(a, b, c, d, (hipComplex *)e, f, g, h, i, j)
 44:     #define hipsparseXcsrilu02(a, b, c, d, e, f, g, h, i, j)          hipsparseCcsrilu02(a, b, c, d, (hipComplex *)e, f, g, h, i, j)
 45:     #define hipsparseXcsric02_bufferSize(a, b, c, d, e, f, g, h, i)   hipsparseCcsric02_bufferSize(a, b, c, d, (hipComplex *)e, f, g, h, i)
 46:     #define hipsparseXcsric02_analysis(a, b, c, d, e, f, g, h, i, j)  hipsparseCcsric02_analysis(a, b, c, d, (hipComplex *)e, f, g, h, i, j)
 47:     #define hipsparseXcsric02(a, b, c, d, e, f, g, h, i, j)           hipsparseCcsric02(a, b, c, d, (hipComplex *)e, f, g, h, i, j)
 48:   #elif defined(PETSC_USE_REAL_DOUBLE)
 49: const hipDoubleComplex PETSC_HIPSPARSE_ONE  = {1.0, 0.0};
 50: const hipDoubleComplex PETSC_HIPSPARSE_ZERO = {0.0, 0.0};
 51:     #define hipsparseXcsrilu02_bufferSize(a, b, c, d, e, f, g, h, i)  hipsparseZcsrilu02_bufferSize(a, b, c, d, (hipDoubleComplex *)e, f, g, h, i)
 52:     #define hipsparseXcsrilu02_analysis(a, b, c, d, e, f, g, h, i, j) hipsparseZcsrilu02_analysis(a, b, c, d, (hipDoubleComplex *)e, f, g, h, i, j)
 53:     #define hipsparseXcsrilu02(a, b, c, d, e, f, g, h, i, j)          hipsparseZcsrilu02(a, b, c, d, (hipDoubleComplex *)e, f, g, h, i, j)
 54:     #define hipsparseXcsric02_bufferSize(a, b, c, d, e, f, g, h, i)   hipsparseZcsric02_bufferSize(a, b, c, d, (hipDoubleComplex *)e, f, g, h, i)
 55:     #define hipsparseXcsric02_analysis(a, b, c, d, e, f, g, h, i, j)  hipsparseZcsric02_analysis(a, b, c, d, (hipDoubleComplex *)e, f, g, h, i, j)
 56:     #define hipsparseXcsric02(a, b, c, d, e, f, g, h, i, j)           hipsparseZcsric02(a, b, c, d, (hipDoubleComplex *)e, f, g, h, i, j)
 57:   #endif /* Single or double */
 58: #else    /* not complex */
 59: const PetscScalar PETSC_HIPSPARSE_ONE  = 1.0;
 60: const PetscScalar PETSC_HIPSPARSE_ZERO = 0.0;
 61:   #if defined(PETSC_USE_REAL_SINGLE)
 62:     #define hipsparseXcsrilu02_bufferSize hipsparseScsrilu02_bufferSize
 63:     #define hipsparseXcsrilu02_analysis   hipsparseScsrilu02_analysis
 64:     #define hipsparseXcsrilu02            hipsparseScsrilu02
 65:     #define hipsparseXcsric02_bufferSize  hipsparseScsric02_bufferSize
 66:     #define hipsparseXcsric02_analysis    hipsparseScsric02_analysis
 67:     #define hipsparseXcsric02             hipsparseScsric02
 68:   #elif defined(PETSC_USE_REAL_DOUBLE)
 69:     #define hipsparseXcsrilu02_bufferSize hipsparseDcsrilu02_bufferSize
 70:     #define hipsparseXcsrilu02_analysis   hipsparseDcsrilu02_analysis
 71:     #define hipsparseXcsrilu02            hipsparseDcsrilu02
 72:     #define hipsparseXcsric02_bufferSize  hipsparseDcsric02_bufferSize
 73:     #define hipsparseXcsric02_analysis    hipsparseDcsric02_analysis
 74:     #define hipsparseXcsric02             hipsparseDcsric02
 75:   #endif /* Single or double */
 76: #endif   /* complex or not */

 78: #define csrsvInfo_t               csrsv2Info_t
 79: #define hipsparseCreateCsrsvInfo  hipsparseCreateCsrsv2Info
 80: #define hipsparseDestroyCsrsvInfo hipsparseDestroyCsrsv2Info
 81: #if defined(PETSC_USE_COMPLEX)
 82:   #if defined(PETSC_USE_REAL_SINGLE)
 83:     #define hipsparseXcsrsv_buffsize(a, b, c, d, e, f, g, h, i, j)          hipsparseCcsrsv2_bufferSize(a, b, c, d, e, (hipComplex *)(f), g, h, i, j)
 84:     #define hipsparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j, k)       hipsparseCcsrsv2_analysis(a, b, c, d, e, (const hipComplex *)(f), g, h, i, j, k)
 85:     #define hipsparseXcsrsv_solve(a, b, c, d, e, f, g, h, i, j, k, l, m, n) hipsparseCcsrsv2_solve(a, b, c, d, (const hipComplex *)(e), f, (const hipComplex *)(g), h, i, j, (const hipComplex *)(k), (hipComplex *)(l), m, n)
 86:   #elif defined(PETSC_USE_REAL_DOUBLE)
 87:     #define hipsparseXcsrsv_buffsize(a, b, c, d, e, f, g, h, i, j)          hipsparseZcsrsv2_bufferSize(a, b, c, d, e, (hipDoubleComplex *)(f), g, h, i, j)
 88:     #define hipsparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j, k)       hipsparseZcsrsv2_analysis(a, b, c, d, e, (const hipDoubleComplex *)(f), g, h, i, j, k)
 89:     #define hipsparseXcsrsv_solve(a, b, c, d, e, f, g, h, i, j, k, l, m, n) hipsparseZcsrsv2_solve(a, b, c, d, (const hipDoubleComplex *)(e), f, (const hipDoubleComplex *)(g), h, i, j, (const hipDoubleComplex *)(k), (hipDoubleComplex *)(l), m, n)
 90:   #endif /* Single or double */
 91: #else    /* not complex */
 92:   #if defined(PETSC_USE_REAL_SINGLE)
 93:     #define hipsparseXcsrsv_buffsize hipsparseScsrsv2_bufferSize
 94:     #define hipsparseXcsrsv_analysis hipsparseScsrsv2_analysis
 95:     #define hipsparseXcsrsv_solve    hipsparseScsrsv2_solve
 96:   #elif defined(PETSC_USE_REAL_DOUBLE)
 97:     #define hipsparseXcsrsv_buffsize hipsparseDcsrsv2_bufferSize
 98:     #define hipsparseXcsrsv_analysis hipsparseDcsrsv2_analysis
 99:     #define hipsparseXcsrsv_solve    hipsparseDcsrsv2_solve
100:   #endif /* Single or double */
101: #endif   /* not complex */

103: #if PETSC_PKG_HIP_VERSION_GE(4, 5, 0)
104:   // #define cusparse_csr2csc cusparseCsr2cscEx2
105:   #if defined(PETSC_USE_COMPLEX)
106:     #if defined(PETSC_USE_REAL_SINGLE)
107:       #define hipsparse_scalartype                                                             HIP_C_32F
108:       #define hipsparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) hipsparseCcsrgeam2(a, b, c, (hipComplex *)d, e, f, (hipComplex *)g, h, i, (hipComplex *)j, k, l, (hipComplex *)m, n, o, p, (hipComplex *)q, r, s, t)
109:       #define hipsparse_csr_spgeam_bufferSize(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) \
110:         hipsparseCcsrgeam2_bufferSizeExt(a, b, c, (hipComplex *)d, e, f, (hipComplex *)g, h, i, (hipComplex *)j, k, l, (hipComplex *)m, n, o, p, (hipComplex *)q, r, s, t)
111:     #elif defined(PETSC_USE_REAL_DOUBLE)
112:       #define hipsparse_scalartype HIP_C_64F
113:       #define hipsparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) \
114:         hipsparseZcsrgeam2(a, b, c, (hipDoubleComplex *)d, e, f, (hipDoubleComplex *)g, h, i, (hipDoubleComplex *)j, k, l, (hipDoubleComplex *)m, n, o, p, (hipDoubleComplex *)q, r, s, t)
115:       #define hipsparse_csr_spgeam_bufferSize(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) \
116:         hipsparseZcsrgeam2_bufferSizeExt(a, b, c, (hipDoubleComplex *)d, e, f, (hipDoubleComplex *)g, h, i, (hipDoubleComplex *)j, k, l, (hipDoubleComplex *)m, n, o, p, (hipDoubleComplex *)q, r, s, t)
117:     #endif /* Single or double */
118:   #else    /* not complex */
119:     #if defined(PETSC_USE_REAL_SINGLE)
120:       #define hipsparse_scalartype            HIP_R_32F
121:       #define hipsparse_csr_spgeam            hipsparseScsrgeam2
122:       #define hipsparse_csr_spgeam_bufferSize hipsparseScsrgeam2_bufferSizeExt
123:     #elif defined(PETSC_USE_REAL_DOUBLE)
124:       #define hipsparse_scalartype            HIP_R_64F
125:       #define hipsparse_csr_spgeam            hipsparseDcsrgeam2
126:       #define hipsparse_csr_spgeam_bufferSize hipsparseDcsrgeam2_bufferSizeExt
127:     #endif /* Single or double */
128:   #endif   /* complex or not */
129: #endif     /* PETSC_PKG_HIP_VERSION_GE(4, 5, 0) */

131: #if defined(PETSC_USE_COMPLEX)
132:   #if defined(PETSC_USE_REAL_SINGLE)
133:     #define hipsparse_scalartype                                                             HIP_C_32F
134:     #define hipsparse_csr_spmv(a, b, c, d, e, f, g, h, i, j, k, l, m)                        hipsparseCcsrmv((a), (b), (c), (d), (e), (hipComplex *)(f), (g), (hipComplex *)(h), (i), (j), (hipComplex *)(k), (hipComplex *)(l), (hipComplex *)(m))
135:     #define hipsparse_csr_spmm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)               hipsparseCcsrmm((a), (b), (c), (d), (e), (f), (hipComplex *)(g), (h), (hipComplex *)(i), (j), (k), (hipComplex *)(l), (m), (hipComplex *)(n), (hipComplex *)(o), (p))
136:     #define hipsparse_csr2csc(a, b, c, d, e, f, g, h, i, j, k, l)                            hipsparseCcsr2csc((a), (b), (c), (d), (hipComplex *)(e), (f), (g), (hipComplex *)(h), (i), (j), (k), (l))
137:     #define hipsparse_hyb_spmv(a, b, c, d, e, f, g, h)                                       hipsparseChybmv((a), (b), (hipComplex *)(c), (d), (e), (hipComplex *)(f), (hipComplex *)(g), (hipComplex *)(h))
138:     #define hipsparse_csr2hyb(a, b, c, d, e, f, g, h, i, j)                                  hipsparseCcsr2hyb((a), (b), (c), (d), (hipComplex *)(e), (f), (g), (h), (i), (j))
139:     #define hipsparse_hyb2csr(a, b, c, d, e, f)                                              hipsparseChyb2csr((a), (b), (c), (hipComplex *)(d), (e), (f))
140:     #define hipsparse_csr_spgemm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) hipsparseCcsrgemm(a, b, c, d, e, f, g, h, (hipComplex *)i, j, k, l, m, (hipComplex *)n, o, p, q, (hipComplex *)r, s, t)
141:   // #define hipsparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)    hipsparseCcsrgeam(a, b, c, (hipComplex *)d, e, f, (hipComplex *)g, h, i, (hipComplex *)j, k, l, (hipComplex *)m, n, o, p, (hipComplex *)q, r, s)
142:   #elif defined(PETSC_USE_REAL_DOUBLE)
143:     #define hipsparse_scalartype                                      HIP_C_64F
144:     #define hipsparse_csr_spmv(a, b, c, d, e, f, g, h, i, j, k, l, m) hipsparseZcsrmv((a), (b), (c), (d), (e), (hipDoubleComplex *)(f), (g), (hipDoubleComplex *)(h), (i), (j), (hipDoubleComplex *)(k), (hipDoubleComplex *)(l), (hipDoubleComplex *)(m))
145:     #define hipsparse_csr_spmm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) \
146:       hipsparseZcsrmm((a), (b), (c), (d), (e), (f), (hipDoubleComplex *)(g), (h), (hipDoubleComplex *)(i), (j), (k), (hipDoubleComplex *)(l), (m), (hipDoubleComplex *)(n), (hipDoubleComplex *)(o), (p))
147:     #define hipsparse_csr2csc(a, b, c, d, e, f, g, h, i, j, k, l)                            hipsparseZcsr2csc((a), (b), (c), (d), (hipDoubleComplex *)(e), (f), (g), (hipDoubleComplex *)(h), (i), (j), (k), (l))
148:     #define hipsparse_hyb_spmv(a, b, c, d, e, f, g, h)                                       hipsparseZhybmv((a), (b), (hipDoubleComplex *)(c), (d), (e), (hipDoubleComplex *)(f), (hipDoubleComplex *)(g), (hipDoubleComplex *)(h))
149:     #define hipsparse_csr2hyb(a, b, c, d, e, f, g, h, i, j)                                  hipsparseZcsr2hyb((a), (b), (c), (d), (hipDoubleComplex *)(e), (f), (g), (h), (i), (j))
150:     #define hipsparse_hyb2csr(a, b, c, d, e, f)                                              hipsparseZhyb2csr((a), (b), (c), (hipDoubleComplex *)(d), (e), (f))
151:     #define hipsparse_csr_spgemm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) hipsparseZcsrgemm(a, b, c, d, e, f, g, h, (hipDoubleComplex *)i, j, k, l, m, (hipDoubleComplex *)n, o, p, q, (hipDoubleComplex *)r, s, t)
152:   // #define hipsparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)    hipsparseZcsrgeam(a, b, c, (hipDoubleComplex *)d, e, f, (hipDoubleComplex *)g, h, i, (hipDoubleComplex *)j, k, l, (hipDoubleComplex *)m, n, o, p, (hipDoubleComplex *)q, r, s)
153:   #endif /* Single or double */
154: #else    /* not complex */
155:   #if defined(PETSC_USE_REAL_SINGLE)
156:     #define hipsparse_scalartype HIP_R_32F
157:     #define hipsparse_csr_spmv   hipsparseScsrmv
158:     #define hipsparse_csr_spmm   hipsparseScsrmm
159:     #define hipsparse_csr2csc    hipsparseScsr2csc
160:     #define hipsparse_hyb_spmv   hipsparseShybmv
161:     #define hipsparse_csr2hyb    hipsparseScsr2hyb
162:     #define hipsparse_hyb2csr    hipsparseShyb2csr
163:     #define hipsparse_csr_spgemm hipsparseScsrgemm
164:   // #define hipsparse_csr_spgeam hipsparseScsrgeam
165:   #elif defined(PETSC_USE_REAL_DOUBLE)
166:     #define hipsparse_scalartype HIP_R_64F
167:     #define hipsparse_csr_spmv   hipsparseDcsrmv
168:     #define hipsparse_csr_spmm   hipsparseDcsrmm
169:     #define hipsparse_csr2csc    hipsparseDcsr2csc
170:     #define hipsparse_hyb_spmv   hipsparseDhybmv
171:     #define hipsparse_csr2hyb    hipsparseDcsr2hyb
172:     #define hipsparse_hyb2csr    hipsparseDhyb2csr
173:     #define hipsparse_csr_spgemm hipsparseDcsrgemm
174:   // #define hipsparse_csr_spgeam hipsparseDcsrgeam
175:   #endif /* Single or double */
176: #endif   /* complex or not */

178: #define THRUSTINTARRAY32 thrust::device_vector<int>
179: #define THRUSTINTARRAY   thrust::device_vector<PetscInt>
180: #define THRUSTARRAY      thrust::device_vector<PetscScalar>

182: /* A CSR matrix structure */
183: struct CsrMatrix {
184:   PetscInt          num_rows;
185:   PetscInt          num_cols;
186:   PetscInt          num_entries;
187:   THRUSTINTARRAY32 *row_offsets;
188:   THRUSTINTARRAY32 *column_indices;
189:   THRUSTARRAY      *values;
190: };

192: /* This is struct holding the relevant data needed to a MatSolve */
193: struct Mat_SeqAIJHIPSPARSETriFactorStruct {
194:   /* Data needed for triangular solve */
195:   hipsparseMatDescr_t    descr;
196:   hipsparseOperation_t   solveOp;
197:   CsrMatrix             *csrMat;
198:   csrsvInfo_t            solveInfo;
199:   hipsparseSolvePolicy_t solvePolicy; /* whether level information is generated and used */
200:   int                    solveBufferSize;
201:   void                  *solveBuffer;
202:   size_t                 csr2cscBufferSize; /* to transpose the triangular factor (only used for CUDA >= 11.0) */
203:   void                  *csr2cscBuffer;
204:   PetscScalar           *AA_h; /* managed host buffer for moving values to the GPU */
205: };

207: /* This is a larger struct holding all the triangular factors for a solve, transpose solve, and any indices used in a reordering */
208: struct Mat_SeqAIJHIPSPARSETriFactors {
209:   Mat_SeqAIJHIPSPARSETriFactorStruct *loTriFactorPtr;          /* pointer for lower triangular (factored matrix) on GPU */
210:   Mat_SeqAIJHIPSPARSETriFactorStruct *upTriFactorPtr;          /* pointer for upper triangular (factored matrix) on GPU */
211:   Mat_SeqAIJHIPSPARSETriFactorStruct *loTriFactorPtrTranspose; /* pointer for lower triangular (factored matrix) on GPU for the transpose (useful for BiCG) */
212:   Mat_SeqAIJHIPSPARSETriFactorStruct *upTriFactorPtrTranspose; /* pointer for upper triangular (factored matrix) on GPU for the transpose (useful for BiCG)*/
213:   THRUSTINTARRAY                     *rpermIndices;            /* indices used for any reordering */
214:   THRUSTINTARRAY                     *cpermIndices;            /* indices used for any reordering */
215:   THRUSTARRAY                        *workVector;
216:   hipsparseHandle_t                   handle;   /* a handle to the hipsparse library */
217:   PetscInt                            nnz;      /* number of nonzeros ... need this for accurate logging between ICC and ILU */
218:   PetscScalar                        *a_band_d; /* GPU data for banded CSR LU factorization matrix diag(L)=1 */
219:   int                                *i_band_d; /* this could be optimized away */
220:   hipDeviceProp_t                     dev_prop;
221:   PetscBool                           init_dev_prop;

223:   /* csrilu0/csric0 appeared in earlier versions of AMD ROCm^{TM}, but we use it along with hipsparseSpSV,
224:      which first appeared in hipsparse with ROCm-4.5.0.
225:   */
226:   PetscBool factorizeOnDevice; /* Do factorization on device or not */
227: #if PETSC_PKG_HIP_VERSION_GE(4, 5, 0)
228:   PetscScalar *csrVal;
229:   int         *csrRowPtr, *csrColIdx; /* a,i,j of M. Using int since some hipsparse APIs only support 32-bit indices */

231:   /* Mixed mat descriptor types? yes, different hipsparse APIs use different types */
232:   hipsparseMatDescr_t   matDescr_M;
233:   hipsparseSpMatDescr_t spMatDescr_L, spMatDescr_U;
234:   hipsparseSpSVDescr_t  spsvDescr_L, spsvDescr_Lt, spsvDescr_U, spsvDescr_Ut;

236:   hipsparseDnVecDescr_t dnVecDescr_X, dnVecDescr_Y;
237:   PetscScalar          *X, *Y; /* data array of dnVec X and Y */

239:   /* Mixed size types? yes */
240:   int    factBufferSize_M; /* M ~= LU or LLt */
241:   size_t spsvBufferSize_L, spsvBufferSize_Lt, spsvBufferSize_U, spsvBufferSize_Ut;
242:   /* hipsparse needs various buffers for factorization and solve of L, U, Lt, or Ut.
243:      To save memory, we share the factorization buffer with one of spsvBuffer_L/U.
244:   */
245:   void *factBuffer_M, *spsvBuffer_L, *spsvBuffer_U, *spsvBuffer_Lt, *spsvBuffer_Ut;

247:   csrilu02Info_t         ilu0Info_M;
248:   csric02Info_t          ic0Info_M;
249:   int                    structural_zero, numerical_zero;
250:   hipsparseSolvePolicy_t policy_M;

252:   /* In MatSolveTranspose() for ILU0, we use the two flags to do on-demand solve */
253:   PetscBool createdTransposeSpSVDescr;    /* Have we created SpSV descriptors for Lt, Ut? */
254:   PetscBool updatedTransposeSpSVAnalysis; /* Have we updated SpSV analysis with the latest L, U values? */

256:   PetscLogDouble numericFactFlops; /* Estimated FLOPs in ILU0/ICC0 numeric factorization */
257: #endif
258: };

260: struct Mat_HipsparseSpMV {
261:   PetscBool             initialized;    /* Don't rely on spmvBuffer != NULL to test if the struct is initialized, */
262:   size_t                spmvBufferSize; /* since I'm not sure if smvBuffer can be NULL even after hipsparseSpMV_bufferSize() */
263:   void                 *spmvBuffer;
264:   hipsparseDnVecDescr_t vecXDescr, vecYDescr; /* descriptor for the dense vectors in y=op(A)x */
265: };

267: /* This is struct holding the relevant data needed to a MatMult */
268: struct Mat_SeqAIJHIPSPARSEMultStruct {
269:   void                 *mat;          /* opaque pointer to a matrix. This could be either a hipsparseHybMat_t or a CsrMatrix */
270:   hipsparseMatDescr_t   descr;        /* Data needed to describe the matrix for a multiply */
271:   THRUSTINTARRAY       *cprowIndices; /* compressed row indices used in the parallel SpMV */
272:   PetscScalar          *alpha_one;    /* pointer to a device "scalar" storing the alpha parameter in the SpMV */
273:   PetscScalar          *beta_zero;    /* pointer to a device "scalar" storing the beta parameter in the SpMV as zero*/
274:   PetscScalar          *beta_one;     /* pointer to a device "scalar" storing the beta parameter in the SpMV as one */
275:   hipsparseSpMatDescr_t matDescr;     /* descriptor for the matrix, used by SpMV and SpMM */
276:   Mat_HipsparseSpMV     hipSpMV[3];   /* different Mat_CusparseSpMV structs for non-transpose, transpose, conj-transpose */
277:   Mat_SeqAIJHIPSPARSEMultStruct() : matDescr(NULL)
278:   {
279:     for (int i = 0; i < 3; i++) hipSpMV[i].initialized = PETSC_FALSE;
280:   }
281: };

283: /* This is a larger struct holding all the matrices for a SpMV, and SpMV Transpose */
284: struct Mat_SeqAIJHIPSPARSE {
285:   Mat_SeqAIJHIPSPARSEMultStruct *mat;               /* pointer to the matrix on the GPU */
286:   Mat_SeqAIJHIPSPARSEMultStruct *matTranspose;      /* pointer to the matrix on the GPU (for the transpose ... useful for BiCG) */
287:   THRUSTARRAY                   *workVector;        /* pointer to a workvector to which we can copy the relevant indices of a vector we want to multiply */
288:   THRUSTINTARRAY32              *rowoffsets_gpu;    /* rowoffsets on GPU in non-compressed-row format. It is used to convert CSR to CSC */
289:   PetscInt                       nrows;             /* number of rows of the matrix seen by GPU */
290:   MatHIPSPARSEStorageFormat      format;            /* the storage format for the matrix on the device */
291:   PetscBool                      use_cpu_solve;     /* Use AIJ_Seq (I)LU solve */
292:   hipStream_t                    stream;            /* a stream for the parallel SpMV ... this is not owned and should not be deleted */
293:   hipsparseHandle_t              handle;            /* a handle to the cusparse library ... this may not be owned (if we're working in parallel i.e. multiGPUs) */
294:   PetscObjectState               nonzerostate;      /* track nonzero state to possibly recreate the GPU matrix */
295:   size_t                         csr2cscBufferSize; /* stuff used to compute the matTranspose above */
296:   void                          *csr2cscBuffer;     /* This is used as a C struct and is calloc'ed by PetscNewLog() */
297:                                                     //  hipsparseCsr2CscAlg_t         csr2cscAlg; /* algorithms can be selected from command line options */
298:   hipsparseSpMVAlg_t         spmvAlg;
299:   hipsparseSpMMAlg_t         spmmAlg;
300:   THRUSTINTARRAY            *csr2csc_i;
301:   PetscSplitCSRDataStructure deviceMat; /* Matrix on device for, eg, assembly */
302:   THRUSTINTARRAY            *cooPerm;   /* permutation array that sorts the input coo entris by row and col */
303:   THRUSTINTARRAY            *cooPerm_a; /* ordered array that indicate i-th nonzero (after sorting) is the j-th unique nonzero */

305:   /* Stuff for extended COO support */
306:   PetscBool   use_extended_coo; /* Use extended COO format */
307:   PetscCount *jmap_d;           /* perm[disp+jmap[i]..disp+jmap[i+1]) gives indices of entries in v[] associated with i-th nonzero of the matrix */
308:   PetscCount *perm_d;

310:   Mat_SeqAIJHIPSPARSE() : use_extended_coo(PETSC_FALSE), perm_d(NULL), jmap_d(NULL) { }
311: };

313: typedef struct Mat_SeqAIJHIPSPARSETriFactors *Mat_SeqAIJHIPSPARSETriFactors_p;

315: PETSC_INTERN PetscErrorCode MatSeqAIJHIPSPARSECopyToGPU(Mat);
316: PETSC_INTERN PetscErrorCode MatSetPreallocationCOO_SeqAIJHIPSPARSE_Basic(Mat, PetscCount, PetscInt[], PetscInt[]);
317: PETSC_INTERN PetscErrorCode MatSetValuesCOO_SeqAIJHIPSPARSE_Basic(Mat, const PetscScalar[], InsertMode);
318: PETSC_INTERN PetscErrorCode MatSeqAIJHIPSPARSEMergeMats(Mat, Mat, MatReuse, Mat *);
319: PETSC_INTERN PetscErrorCode MatSeqAIJHIPSPARSETriFactors_Reset(Mat_SeqAIJHIPSPARSETriFactors_p *);

321: static inline bool isHipMem(const void *data)
322: {
323:   hipError_t                   cerr;
324:   struct hipPointerAttribute_t attr;
325:   enum hipMemoryType           mtype;
326:   cerr = hipPointerGetAttributes(&attr, data); /* Do not check error since before CUDA 11.0, passing a host pointer returns hipErrorInvalidValue */
327:   hipGetLastError();                           /* Reset the last error */
328:   mtype = attr.memoryType;
329:   if (cerr == hipSuccess && mtype == hipMemoryTypeDevice) return true;
330:   else return false;
331: }

333: #endif // PETSC_HIPSPARSEIMPL_H