Actual source code: baijfact5.c
2: /*
3: Factorization code for BAIJ format.
4: */
5: #include <../src/mat/impls/baij/seq/baij.h>
6: #include <petsc/private/kernels/blockinvert.h>
7: /*
8: Version for when blocks are 7 by 7
9: */
10: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_inplace(Mat C, Mat A, const MatFactorInfo *info)
11: {
12: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
13: IS isrow = b->row, isicol = b->icol;
14: const PetscInt *r, *ic, *bi = b->i, *bj = b->j, *ajtmp, *diag_offset = b->diag, *ai = a->i, *aj = a->j, *pj, *ajtmpold;
15: PetscInt i, j, n = a->mbs, nz, row, idx;
16: MatScalar *pv, *v, *rtmp, *pc, *w, *x;
17: MatScalar p1, p2, p3, p4, m1, m2, m3, m4, m5, m6, m7, m8, m9, x1, x2, x3, x4;
18: MatScalar p5, p6, p7, p8, p9, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16;
19: MatScalar x17, x18, x19, x20, x21, x22, x23, x24, x25, p10, p11, p12, p13, p14;
20: MatScalar p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, m10, m11, m12;
21: MatScalar m13, m14, m15, m16, m17, m18, m19, m20, m21, m22, m23, m24, m25;
22: MatScalar p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36;
23: MatScalar p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49;
24: MatScalar x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36;
25: MatScalar x37, x38, x39, x40, x41, x42, x43, x44, x45, x46, x47, x48, x49;
26: MatScalar m26, m27, m28, m29, m30, m31, m32, m33, m34, m35, m36;
27: MatScalar m37, m38, m39, m40, m41, m42, m43, m44, m45, m46, m47, m48, m49;
28: MatScalar *ba = b->a, *aa = a->a;
29: PetscReal shift = info->shiftamount;
30: PetscBool allowzeropivot, zeropivotdetected;
32: allowzeropivot = PetscNot(A->erroriffailure);
33: ISGetIndices(isrow, &r);
34: ISGetIndices(isicol, &ic);
35: PetscMalloc1(49 * (n + 1), &rtmp);
37: for (i = 0; i < n; i++) {
38: nz = bi[i + 1] - bi[i];
39: ajtmp = bj + bi[i];
40: for (j = 0; j < nz; j++) {
41: x = rtmp + 49 * ajtmp[j];
42: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
43: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
44: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
45: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
46: x[34] = x[35] = x[36] = x[37] = x[38] = x[39] = x[40] = x[41] = 0.0;
47: x[42] = x[43] = x[44] = x[45] = x[46] = x[47] = x[48] = 0.0;
48: }
49: /* load in initial (unfactored row) */
50: idx = r[i];
51: nz = ai[idx + 1] - ai[idx];
52: ajtmpold = aj + ai[idx];
53: v = aa + 49 * ai[idx];
54: for (j = 0; j < nz; j++) {
55: x = rtmp + 49 * ic[ajtmpold[j]];
56: x[0] = v[0];
57: x[1] = v[1];
58: x[2] = v[2];
59: x[3] = v[3];
60: x[4] = v[4];
61: x[5] = v[5];
62: x[6] = v[6];
63: x[7] = v[7];
64: x[8] = v[8];
65: x[9] = v[9];
66: x[10] = v[10];
67: x[11] = v[11];
68: x[12] = v[12];
69: x[13] = v[13];
70: x[14] = v[14];
71: x[15] = v[15];
72: x[16] = v[16];
73: x[17] = v[17];
74: x[18] = v[18];
75: x[19] = v[19];
76: x[20] = v[20];
77: x[21] = v[21];
78: x[22] = v[22];
79: x[23] = v[23];
80: x[24] = v[24];
81: x[25] = v[25];
82: x[26] = v[26];
83: x[27] = v[27];
84: x[28] = v[28];
85: x[29] = v[29];
86: x[30] = v[30];
87: x[31] = v[31];
88: x[32] = v[32];
89: x[33] = v[33];
90: x[34] = v[34];
91: x[35] = v[35];
92: x[36] = v[36];
93: x[37] = v[37];
94: x[38] = v[38];
95: x[39] = v[39];
96: x[40] = v[40];
97: x[41] = v[41];
98: x[42] = v[42];
99: x[43] = v[43];
100: x[44] = v[44];
101: x[45] = v[45];
102: x[46] = v[46];
103: x[47] = v[47];
104: x[48] = v[48];
105: v += 49;
106: }
107: row = *ajtmp++;
108: while (row < i) {
109: pc = rtmp + 49 * row;
110: p1 = pc[0];
111: p2 = pc[1];
112: p3 = pc[2];
113: p4 = pc[3];
114: p5 = pc[4];
115: p6 = pc[5];
116: p7 = pc[6];
117: p8 = pc[7];
118: p9 = pc[8];
119: p10 = pc[9];
120: p11 = pc[10];
121: p12 = pc[11];
122: p13 = pc[12];
123: p14 = pc[13];
124: p15 = pc[14];
125: p16 = pc[15];
126: p17 = pc[16];
127: p18 = pc[17];
128: p19 = pc[18];
129: p20 = pc[19];
130: p21 = pc[20];
131: p22 = pc[21];
132: p23 = pc[22];
133: p24 = pc[23];
134: p25 = pc[24];
135: p26 = pc[25];
136: p27 = pc[26];
137: p28 = pc[27];
138: p29 = pc[28];
139: p30 = pc[29];
140: p31 = pc[30];
141: p32 = pc[31];
142: p33 = pc[32];
143: p34 = pc[33];
144: p35 = pc[34];
145: p36 = pc[35];
146: p37 = pc[36];
147: p38 = pc[37];
148: p39 = pc[38];
149: p40 = pc[39];
150: p41 = pc[40];
151: p42 = pc[41];
152: p43 = pc[42];
153: p44 = pc[43];
154: p45 = pc[44];
155: p46 = pc[45];
156: p47 = pc[46];
157: p48 = pc[47];
158: p49 = pc[48];
159: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 || p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 || p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 || p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 || p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 || p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0 || p37 != 0.0 || p38 != 0.0 || p39 != 0.0 || p40 != 0.0 || p41 != 0.0 || p42 != 0.0 || p43 != 0.0 || p44 != 0.0 || p45 != 0.0 || p46 != 0.0 || p47 != 0.0 || p48 != 0.0 || p49 != 0.0) {
160: pv = ba + 49 * diag_offset[row];
161: pj = bj + diag_offset[row] + 1;
162: x1 = pv[0];
163: x2 = pv[1];
164: x3 = pv[2];
165: x4 = pv[3];
166: x5 = pv[4];
167: x6 = pv[5];
168: x7 = pv[6];
169: x8 = pv[7];
170: x9 = pv[8];
171: x10 = pv[9];
172: x11 = pv[10];
173: x12 = pv[11];
174: x13 = pv[12];
175: x14 = pv[13];
176: x15 = pv[14];
177: x16 = pv[15];
178: x17 = pv[16];
179: x18 = pv[17];
180: x19 = pv[18];
181: x20 = pv[19];
182: x21 = pv[20];
183: x22 = pv[21];
184: x23 = pv[22];
185: x24 = pv[23];
186: x25 = pv[24];
187: x26 = pv[25];
188: x27 = pv[26];
189: x28 = pv[27];
190: x29 = pv[28];
191: x30 = pv[29];
192: x31 = pv[30];
193: x32 = pv[31];
194: x33 = pv[32];
195: x34 = pv[33];
196: x35 = pv[34];
197: x36 = pv[35];
198: x37 = pv[36];
199: x38 = pv[37];
200: x39 = pv[38];
201: x40 = pv[39];
202: x41 = pv[40];
203: x42 = pv[41];
204: x43 = pv[42];
205: x44 = pv[43];
206: x45 = pv[44];
207: x46 = pv[45];
208: x47 = pv[46];
209: x48 = pv[47];
210: x49 = pv[48];
211: pc[0] = m1 = p1 * x1 + p8 * x2 + p15 * x3 + p22 * x4 + p29 * x5 + p36 * x6 + p43 * x7;
212: pc[1] = m2 = p2 * x1 + p9 * x2 + p16 * x3 + p23 * x4 + p30 * x5 + p37 * x6 + p44 * x7;
213: pc[2] = m3 = p3 * x1 + p10 * x2 + p17 * x3 + p24 * x4 + p31 * x5 + p38 * x6 + p45 * x7;
214: pc[3] = m4 = p4 * x1 + p11 * x2 + p18 * x3 + p25 * x4 + p32 * x5 + p39 * x6 + p46 * x7;
215: pc[4] = m5 = p5 * x1 + p12 * x2 + p19 * x3 + p26 * x4 + p33 * x5 + p40 * x6 + p47 * x7;
216: pc[5] = m6 = p6 * x1 + p13 * x2 + p20 * x3 + p27 * x4 + p34 * x5 + p41 * x6 + p48 * x7;
217: pc[6] = m7 = p7 * x1 + p14 * x2 + p21 * x3 + p28 * x4 + p35 * x5 + p42 * x6 + p49 * x7;
219: pc[7] = m8 = p1 * x8 + p8 * x9 + p15 * x10 + p22 * x11 + p29 * x12 + p36 * x13 + p43 * x14;
220: pc[8] = m9 = p2 * x8 + p9 * x9 + p16 * x10 + p23 * x11 + p30 * x12 + p37 * x13 + p44 * x14;
221: pc[9] = m10 = p3 * x8 + p10 * x9 + p17 * x10 + p24 * x11 + p31 * x12 + p38 * x13 + p45 * x14;
222: pc[10] = m11 = p4 * x8 + p11 * x9 + p18 * x10 + p25 * x11 + p32 * x12 + p39 * x13 + p46 * x14;
223: pc[11] = m12 = p5 * x8 + p12 * x9 + p19 * x10 + p26 * x11 + p33 * x12 + p40 * x13 + p47 * x14;
224: pc[12] = m13 = p6 * x8 + p13 * x9 + p20 * x10 + p27 * x11 + p34 * x12 + p41 * x13 + p48 * x14;
225: pc[13] = m14 = p7 * x8 + p14 * x9 + p21 * x10 + p28 * x11 + p35 * x12 + p42 * x13 + p49 * x14;
227: pc[14] = m15 = p1 * x15 + p8 * x16 + p15 * x17 + p22 * x18 + p29 * x19 + p36 * x20 + p43 * x21;
228: pc[15] = m16 = p2 * x15 + p9 * x16 + p16 * x17 + p23 * x18 + p30 * x19 + p37 * x20 + p44 * x21;
229: pc[16] = m17 = p3 * x15 + p10 * x16 + p17 * x17 + p24 * x18 + p31 * x19 + p38 * x20 + p45 * x21;
230: pc[17] = m18 = p4 * x15 + p11 * x16 + p18 * x17 + p25 * x18 + p32 * x19 + p39 * x20 + p46 * x21;
231: pc[18] = m19 = p5 * x15 + p12 * x16 + p19 * x17 + p26 * x18 + p33 * x19 + p40 * x20 + p47 * x21;
232: pc[19] = m20 = p6 * x15 + p13 * x16 + p20 * x17 + p27 * x18 + p34 * x19 + p41 * x20 + p48 * x21;
233: pc[20] = m21 = p7 * x15 + p14 * x16 + p21 * x17 + p28 * x18 + p35 * x19 + p42 * x20 + p49 * x21;
235: pc[21] = m22 = p1 * x22 + p8 * x23 + p15 * x24 + p22 * x25 + p29 * x26 + p36 * x27 + p43 * x28;
236: pc[22] = m23 = p2 * x22 + p9 * x23 + p16 * x24 + p23 * x25 + p30 * x26 + p37 * x27 + p44 * x28;
237: pc[23] = m24 = p3 * x22 + p10 * x23 + p17 * x24 + p24 * x25 + p31 * x26 + p38 * x27 + p45 * x28;
238: pc[24] = m25 = p4 * x22 + p11 * x23 + p18 * x24 + p25 * x25 + p32 * x26 + p39 * x27 + p46 * x28;
239: pc[25] = m26 = p5 * x22 + p12 * x23 + p19 * x24 + p26 * x25 + p33 * x26 + p40 * x27 + p47 * x28;
240: pc[26] = m27 = p6 * x22 + p13 * x23 + p20 * x24 + p27 * x25 + p34 * x26 + p41 * x27 + p48 * x28;
241: pc[27] = m28 = p7 * x22 + p14 * x23 + p21 * x24 + p28 * x25 + p35 * x26 + p42 * x27 + p49 * x28;
243: pc[28] = m29 = p1 * x29 + p8 * x30 + p15 * x31 + p22 * x32 + p29 * x33 + p36 * x34 + p43 * x35;
244: pc[29] = m30 = p2 * x29 + p9 * x30 + p16 * x31 + p23 * x32 + p30 * x33 + p37 * x34 + p44 * x35;
245: pc[30] = m31 = p3 * x29 + p10 * x30 + p17 * x31 + p24 * x32 + p31 * x33 + p38 * x34 + p45 * x35;
246: pc[31] = m32 = p4 * x29 + p11 * x30 + p18 * x31 + p25 * x32 + p32 * x33 + p39 * x34 + p46 * x35;
247: pc[32] = m33 = p5 * x29 + p12 * x30 + p19 * x31 + p26 * x32 + p33 * x33 + p40 * x34 + p47 * x35;
248: pc[33] = m34 = p6 * x29 + p13 * x30 + p20 * x31 + p27 * x32 + p34 * x33 + p41 * x34 + p48 * x35;
249: pc[34] = m35 = p7 * x29 + p14 * x30 + p21 * x31 + p28 * x32 + p35 * x33 + p42 * x34 + p49 * x35;
251: pc[35] = m36 = p1 * x36 + p8 * x37 + p15 * x38 + p22 * x39 + p29 * x40 + p36 * x41 + p43 * x42;
252: pc[36] = m37 = p2 * x36 + p9 * x37 + p16 * x38 + p23 * x39 + p30 * x40 + p37 * x41 + p44 * x42;
253: pc[37] = m38 = p3 * x36 + p10 * x37 + p17 * x38 + p24 * x39 + p31 * x40 + p38 * x41 + p45 * x42;
254: pc[38] = m39 = p4 * x36 + p11 * x37 + p18 * x38 + p25 * x39 + p32 * x40 + p39 * x41 + p46 * x42;
255: pc[39] = m40 = p5 * x36 + p12 * x37 + p19 * x38 + p26 * x39 + p33 * x40 + p40 * x41 + p47 * x42;
256: pc[40] = m41 = p6 * x36 + p13 * x37 + p20 * x38 + p27 * x39 + p34 * x40 + p41 * x41 + p48 * x42;
257: pc[41] = m42 = p7 * x36 + p14 * x37 + p21 * x38 + p28 * x39 + p35 * x40 + p42 * x41 + p49 * x42;
259: pc[42] = m43 = p1 * x43 + p8 * x44 + p15 * x45 + p22 * x46 + p29 * x47 + p36 * x48 + p43 * x49;
260: pc[43] = m44 = p2 * x43 + p9 * x44 + p16 * x45 + p23 * x46 + p30 * x47 + p37 * x48 + p44 * x49;
261: pc[44] = m45 = p3 * x43 + p10 * x44 + p17 * x45 + p24 * x46 + p31 * x47 + p38 * x48 + p45 * x49;
262: pc[45] = m46 = p4 * x43 + p11 * x44 + p18 * x45 + p25 * x46 + p32 * x47 + p39 * x48 + p46 * x49;
263: pc[46] = m47 = p5 * x43 + p12 * x44 + p19 * x45 + p26 * x46 + p33 * x47 + p40 * x48 + p47 * x49;
264: pc[47] = m48 = p6 * x43 + p13 * x44 + p20 * x45 + p27 * x46 + p34 * x47 + p41 * x48 + p48 * x49;
265: pc[48] = m49 = p7 * x43 + p14 * x44 + p21 * x45 + p28 * x46 + p35 * x47 + p42 * x48 + p49 * x49;
267: nz = bi[row + 1] - diag_offset[row] - 1;
268: pv += 49;
269: for (j = 0; j < nz; j++) {
270: x1 = pv[0];
271: x2 = pv[1];
272: x3 = pv[2];
273: x4 = pv[3];
274: x5 = pv[4];
275: x6 = pv[5];
276: x7 = pv[6];
277: x8 = pv[7];
278: x9 = pv[8];
279: x10 = pv[9];
280: x11 = pv[10];
281: x12 = pv[11];
282: x13 = pv[12];
283: x14 = pv[13];
284: x15 = pv[14];
285: x16 = pv[15];
286: x17 = pv[16];
287: x18 = pv[17];
288: x19 = pv[18];
289: x20 = pv[19];
290: x21 = pv[20];
291: x22 = pv[21];
292: x23 = pv[22];
293: x24 = pv[23];
294: x25 = pv[24];
295: x26 = pv[25];
296: x27 = pv[26];
297: x28 = pv[27];
298: x29 = pv[28];
299: x30 = pv[29];
300: x31 = pv[30];
301: x32 = pv[31];
302: x33 = pv[32];
303: x34 = pv[33];
304: x35 = pv[34];
305: x36 = pv[35];
306: x37 = pv[36];
307: x38 = pv[37];
308: x39 = pv[38];
309: x40 = pv[39];
310: x41 = pv[40];
311: x42 = pv[41];
312: x43 = pv[42];
313: x44 = pv[43];
314: x45 = pv[44];
315: x46 = pv[45];
316: x47 = pv[46];
317: x48 = pv[47];
318: x49 = pv[48];
319: x = rtmp + 49 * pj[j];
320: x[0] -= m1 * x1 + m8 * x2 + m15 * x3 + m22 * x4 + m29 * x5 + m36 * x6 + m43 * x7;
321: x[1] -= m2 * x1 + m9 * x2 + m16 * x3 + m23 * x4 + m30 * x5 + m37 * x6 + m44 * x7;
322: x[2] -= m3 * x1 + m10 * x2 + m17 * x3 + m24 * x4 + m31 * x5 + m38 * x6 + m45 * x7;
323: x[3] -= m4 * x1 + m11 * x2 + m18 * x3 + m25 * x4 + m32 * x5 + m39 * x6 + m46 * x7;
324: x[4] -= m5 * x1 + m12 * x2 + m19 * x3 + m26 * x4 + m33 * x5 + m40 * x6 + m47 * x7;
325: x[5] -= m6 * x1 + m13 * x2 + m20 * x3 + m27 * x4 + m34 * x5 + m41 * x6 + m48 * x7;
326: x[6] -= m7 * x1 + m14 * x2 + m21 * x3 + m28 * x4 + m35 * x5 + m42 * x6 + m49 * x7;
328: x[7] -= m1 * x8 + m8 * x9 + m15 * x10 + m22 * x11 + m29 * x12 + m36 * x13 + m43 * x14;
329: x[8] -= m2 * x8 + m9 * x9 + m16 * x10 + m23 * x11 + m30 * x12 + m37 * x13 + m44 * x14;
330: x[9] -= m3 * x8 + m10 * x9 + m17 * x10 + m24 * x11 + m31 * x12 + m38 * x13 + m45 * x14;
331: x[10] -= m4 * x8 + m11 * x9 + m18 * x10 + m25 * x11 + m32 * x12 + m39 * x13 + m46 * x14;
332: x[11] -= m5 * x8 + m12 * x9 + m19 * x10 + m26 * x11 + m33 * x12 + m40 * x13 + m47 * x14;
333: x[12] -= m6 * x8 + m13 * x9 + m20 * x10 + m27 * x11 + m34 * x12 + m41 * x13 + m48 * x14;
334: x[13] -= m7 * x8 + m14 * x9 + m21 * x10 + m28 * x11 + m35 * x12 + m42 * x13 + m49 * x14;
336: x[14] -= m1 * x15 + m8 * x16 + m15 * x17 + m22 * x18 + m29 * x19 + m36 * x20 + m43 * x21;
337: x[15] -= m2 * x15 + m9 * x16 + m16 * x17 + m23 * x18 + m30 * x19 + m37 * x20 + m44 * x21;
338: x[16] -= m3 * x15 + m10 * x16 + m17 * x17 + m24 * x18 + m31 * x19 + m38 * x20 + m45 * x21;
339: x[17] -= m4 * x15 + m11 * x16 + m18 * x17 + m25 * x18 + m32 * x19 + m39 * x20 + m46 * x21;
340: x[18] -= m5 * x15 + m12 * x16 + m19 * x17 + m26 * x18 + m33 * x19 + m40 * x20 + m47 * x21;
341: x[19] -= m6 * x15 + m13 * x16 + m20 * x17 + m27 * x18 + m34 * x19 + m41 * x20 + m48 * x21;
342: x[20] -= m7 * x15 + m14 * x16 + m21 * x17 + m28 * x18 + m35 * x19 + m42 * x20 + m49 * x21;
344: x[21] -= m1 * x22 + m8 * x23 + m15 * x24 + m22 * x25 + m29 * x26 + m36 * x27 + m43 * x28;
345: x[22] -= m2 * x22 + m9 * x23 + m16 * x24 + m23 * x25 + m30 * x26 + m37 * x27 + m44 * x28;
346: x[23] -= m3 * x22 + m10 * x23 + m17 * x24 + m24 * x25 + m31 * x26 + m38 * x27 + m45 * x28;
347: x[24] -= m4 * x22 + m11 * x23 + m18 * x24 + m25 * x25 + m32 * x26 + m39 * x27 + m46 * x28;
348: x[25] -= m5 * x22 + m12 * x23 + m19 * x24 + m26 * x25 + m33 * x26 + m40 * x27 + m47 * x28;
349: x[26] -= m6 * x22 + m13 * x23 + m20 * x24 + m27 * x25 + m34 * x26 + m41 * x27 + m48 * x28;
350: x[27] -= m7 * x22 + m14 * x23 + m21 * x24 + m28 * x25 + m35 * x26 + m42 * x27 + m49 * x28;
352: x[28] -= m1 * x29 + m8 * x30 + m15 * x31 + m22 * x32 + m29 * x33 + m36 * x34 + m43 * x35;
353: x[29] -= m2 * x29 + m9 * x30 + m16 * x31 + m23 * x32 + m30 * x33 + m37 * x34 + m44 * x35;
354: x[30] -= m3 * x29 + m10 * x30 + m17 * x31 + m24 * x32 + m31 * x33 + m38 * x34 + m45 * x35;
355: x[31] -= m4 * x29 + m11 * x30 + m18 * x31 + m25 * x32 + m32 * x33 + m39 * x34 + m46 * x35;
356: x[32] -= m5 * x29 + m12 * x30 + m19 * x31 + m26 * x32 + m33 * x33 + m40 * x34 + m47 * x35;
357: x[33] -= m6 * x29 + m13 * x30 + m20 * x31 + m27 * x32 + m34 * x33 + m41 * x34 + m48 * x35;
358: x[34] -= m7 * x29 + m14 * x30 + m21 * x31 + m28 * x32 + m35 * x33 + m42 * x34 + m49 * x35;
360: x[35] -= m1 * x36 + m8 * x37 + m15 * x38 + m22 * x39 + m29 * x40 + m36 * x41 + m43 * x42;
361: x[36] -= m2 * x36 + m9 * x37 + m16 * x38 + m23 * x39 + m30 * x40 + m37 * x41 + m44 * x42;
362: x[37] -= m3 * x36 + m10 * x37 + m17 * x38 + m24 * x39 + m31 * x40 + m38 * x41 + m45 * x42;
363: x[38] -= m4 * x36 + m11 * x37 + m18 * x38 + m25 * x39 + m32 * x40 + m39 * x41 + m46 * x42;
364: x[39] -= m5 * x36 + m12 * x37 + m19 * x38 + m26 * x39 + m33 * x40 + m40 * x41 + m47 * x42;
365: x[40] -= m6 * x36 + m13 * x37 + m20 * x38 + m27 * x39 + m34 * x40 + m41 * x41 + m48 * x42;
366: x[41] -= m7 * x36 + m14 * x37 + m21 * x38 + m28 * x39 + m35 * x40 + m42 * x41 + m49 * x42;
368: x[42] -= m1 * x43 + m8 * x44 + m15 * x45 + m22 * x46 + m29 * x47 + m36 * x48 + m43 * x49;
369: x[43] -= m2 * x43 + m9 * x44 + m16 * x45 + m23 * x46 + m30 * x47 + m37 * x48 + m44 * x49;
370: x[44] -= m3 * x43 + m10 * x44 + m17 * x45 + m24 * x46 + m31 * x47 + m38 * x48 + m45 * x49;
371: x[45] -= m4 * x43 + m11 * x44 + m18 * x45 + m25 * x46 + m32 * x47 + m39 * x48 + m46 * x49;
372: x[46] -= m5 * x43 + m12 * x44 + m19 * x45 + m26 * x46 + m33 * x47 + m40 * x48 + m47 * x49;
373: x[47] -= m6 * x43 + m13 * x44 + m20 * x45 + m27 * x46 + m34 * x47 + m41 * x48 + m48 * x49;
374: x[48] -= m7 * x43 + m14 * x44 + m21 * x45 + m28 * x46 + m35 * x47 + m42 * x48 + m49 * x49;
375: pv += 49;
376: }
377: PetscLogFlops(686.0 * nz + 637.0);
378: }
379: row = *ajtmp++;
380: }
381: /* finished row so stick it into b->a */
382: pv = ba + 49 * bi[i];
383: pj = bj + bi[i];
384: nz = bi[i + 1] - bi[i];
385: for (j = 0; j < nz; j++) {
386: x = rtmp + 49 * pj[j];
387: pv[0] = x[0];
388: pv[1] = x[1];
389: pv[2] = x[2];
390: pv[3] = x[3];
391: pv[4] = x[4];
392: pv[5] = x[5];
393: pv[6] = x[6];
394: pv[7] = x[7];
395: pv[8] = x[8];
396: pv[9] = x[9];
397: pv[10] = x[10];
398: pv[11] = x[11];
399: pv[12] = x[12];
400: pv[13] = x[13];
401: pv[14] = x[14];
402: pv[15] = x[15];
403: pv[16] = x[16];
404: pv[17] = x[17];
405: pv[18] = x[18];
406: pv[19] = x[19];
407: pv[20] = x[20];
408: pv[21] = x[21];
409: pv[22] = x[22];
410: pv[23] = x[23];
411: pv[24] = x[24];
412: pv[25] = x[25];
413: pv[26] = x[26];
414: pv[27] = x[27];
415: pv[28] = x[28];
416: pv[29] = x[29];
417: pv[30] = x[30];
418: pv[31] = x[31];
419: pv[32] = x[32];
420: pv[33] = x[33];
421: pv[34] = x[34];
422: pv[35] = x[35];
423: pv[36] = x[36];
424: pv[37] = x[37];
425: pv[38] = x[38];
426: pv[39] = x[39];
427: pv[40] = x[40];
428: pv[41] = x[41];
429: pv[42] = x[42];
430: pv[43] = x[43];
431: pv[44] = x[44];
432: pv[45] = x[45];
433: pv[46] = x[46];
434: pv[47] = x[47];
435: pv[48] = x[48];
436: pv += 49;
437: }
438: /* invert diagonal block */
439: w = ba + 49 * diag_offset[i];
440: PetscKernel_A_gets_inverse_A_7(w, shift, allowzeropivot, &zeropivotdetected);
441: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
442: }
444: PetscFree(rtmp);
445: ISRestoreIndices(isicol, &ic);
446: ISRestoreIndices(isrow, &r);
448: C->ops->solve = MatSolve_SeqBAIJ_7_inplace;
449: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_inplace;
450: C->assembled = PETSC_TRUE;
452: PetscLogFlops(1.333333333333 * 7 * 7 * 7 * b->mbs); /* from inverting diagonal blocks */
453: return 0;
454: }
456: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7(Mat B, Mat A, const MatFactorInfo *info)
457: {
458: Mat C = B;
459: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
460: IS isrow = b->row, isicol = b->icol;
461: const PetscInt *r, *ic;
462: PetscInt i, j, k, nz, nzL, row;
463: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
464: const PetscInt *ajtmp, *bjtmp, *bdiag = b->diag, *pj, bs2 = a->bs2;
465: MatScalar *rtmp, *pc, *mwork, *v, *pv, *aa = a->a;
466: PetscInt flg;
467: PetscReal shift = info->shiftamount;
468: PetscBool allowzeropivot, zeropivotdetected;
470: allowzeropivot = PetscNot(A->erroriffailure);
471: ISGetIndices(isrow, &r);
472: ISGetIndices(isicol, &ic);
474: /* generate work space needed by the factorization */
475: PetscMalloc2(bs2 * n, &rtmp, bs2, &mwork);
476: PetscArrayzero(rtmp, bs2 * n);
478: for (i = 0; i < n; i++) {
479: /* zero rtmp */
480: /* L part */
481: nz = bi[i + 1] - bi[i];
482: bjtmp = bj + bi[i];
483: for (j = 0; j < nz; j++) PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2);
485: /* U part */
486: nz = bdiag[i] - bdiag[i + 1];
487: bjtmp = bj + bdiag[i + 1] + 1;
488: for (j = 0; j < nz; j++) PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2);
490: /* load in initial (unfactored row) */
491: nz = ai[r[i] + 1] - ai[r[i]];
492: ajtmp = aj + ai[r[i]];
493: v = aa + bs2 * ai[r[i]];
494: for (j = 0; j < nz; j++) PetscArraycpy(rtmp + bs2 * ic[ajtmp[j]], v + bs2 * j, bs2);
496: /* elimination */
497: bjtmp = bj + bi[i];
498: nzL = bi[i + 1] - bi[i];
499: for (k = 0; k < nzL; k++) {
500: row = bjtmp[k];
501: pc = rtmp + bs2 * row;
502: for (flg = 0, j = 0; j < bs2; j++) {
503: if (pc[j] != 0.0) {
504: flg = 1;
505: break;
506: }
507: }
508: if (flg) {
509: pv = b->a + bs2 * bdiag[row];
510: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
511: PetscKernel_A_gets_A_times_B_7(pc, pv, mwork);
513: pj = b->j + bdiag[row + 1] + 1; /* beginning of U(row,:) */
514: pv = b->a + bs2 * (bdiag[row + 1] + 1);
515: nz = bdiag[row] - bdiag[row + 1] - 1; /* num of entries inU(row,:), excluding diag */
516: for (j = 0; j < nz; j++) {
517: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
518: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
519: v = rtmp + bs2 * pj[j];
520: PetscKernel_A_gets_A_minus_B_times_C_7(v, pc, pv);
521: pv += bs2;
522: }
523: PetscLogFlops(686.0 * nz + 637); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
524: }
525: }
527: /* finished row so stick it into b->a */
528: /* L part */
529: pv = b->a + bs2 * bi[i];
530: pj = b->j + bi[i];
531: nz = bi[i + 1] - bi[i];
532: for (j = 0; j < nz; j++) PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2);
534: /* Mark diagonal and invert diagonal for simpler triangular solves */
535: pv = b->a + bs2 * bdiag[i];
536: pj = b->j + bdiag[i];
537: PetscArraycpy(pv, rtmp + bs2 * pj[0], bs2);
538: PetscKernel_A_gets_inverse_A_7(pv, shift, allowzeropivot, &zeropivotdetected);
539: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
541: /* U part */
542: pv = b->a + bs2 * (bdiag[i + 1] + 1);
543: pj = b->j + bdiag[i + 1] + 1;
544: nz = bdiag[i] - bdiag[i + 1] - 1;
545: for (j = 0; j < nz; j++) PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2);
546: }
548: PetscFree2(rtmp, mwork);
549: ISRestoreIndices(isicol, &ic);
550: ISRestoreIndices(isrow, &r);
552: C->ops->solve = MatSolve_SeqBAIJ_7;
553: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7;
554: C->assembled = PETSC_TRUE;
556: PetscLogFlops(1.333333333333 * 7 * 7 * 7 * n); /* from inverting diagonal blocks */
557: return 0;
558: }
560: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering_inplace(Mat C, Mat A, const MatFactorInfo *info)
561: {
562: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
563: PetscInt i, j, n = a->mbs, *bi = b->i, *bj = b->j;
564: PetscInt *ajtmpold, *ajtmp, nz, row;
565: PetscInt *diag_offset = b->diag, *ai = a->i, *aj = a->j, *pj;
566: MatScalar *pv, *v, *rtmp, *pc, *w, *x;
567: MatScalar x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
568: MatScalar x16, x17, x18, x19, x20, x21, x22, x23, x24, x25;
569: MatScalar p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15;
570: MatScalar p16, p17, p18, p19, p20, p21, p22, p23, p24, p25;
571: MatScalar m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15;
572: MatScalar m16, m17, m18, m19, m20, m21, m22, m23, m24, m25;
573: MatScalar p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36;
574: MatScalar p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49;
575: MatScalar x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36;
576: MatScalar x37, x38, x39, x40, x41, x42, x43, x44, x45, x46, x47, x48, x49;
577: MatScalar m26, m27, m28, m29, m30, m31, m32, m33, m34, m35, m36;
578: MatScalar m37, m38, m39, m40, m41, m42, m43, m44, m45, m46, m47, m48, m49;
579: MatScalar *ba = b->a, *aa = a->a;
580: PetscReal shift = info->shiftamount;
581: PetscBool allowzeropivot, zeropivotdetected;
583: allowzeropivot = PetscNot(A->erroriffailure);
584: PetscMalloc1(49 * (n + 1), &rtmp);
585: for (i = 0; i < n; i++) {
586: nz = bi[i + 1] - bi[i];
587: ajtmp = bj + bi[i];
588: for (j = 0; j < nz; j++) {
589: x = rtmp + 49 * ajtmp[j];
590: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
591: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
592: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
593: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
594: x[34] = x[35] = x[36] = x[37] = x[38] = x[39] = x[40] = x[41] = 0.0;
595: x[42] = x[43] = x[44] = x[45] = x[46] = x[47] = x[48] = 0.0;
596: }
597: /* load in initial (unfactored row) */
598: nz = ai[i + 1] - ai[i];
599: ajtmpold = aj + ai[i];
600: v = aa + 49 * ai[i];
601: for (j = 0; j < nz; j++) {
602: x = rtmp + 49 * ajtmpold[j];
603: x[0] = v[0];
604: x[1] = v[1];
605: x[2] = v[2];
606: x[3] = v[3];
607: x[4] = v[4];
608: x[5] = v[5];
609: x[6] = v[6];
610: x[7] = v[7];
611: x[8] = v[8];
612: x[9] = v[9];
613: x[10] = v[10];
614: x[11] = v[11];
615: x[12] = v[12];
616: x[13] = v[13];
617: x[14] = v[14];
618: x[15] = v[15];
619: x[16] = v[16];
620: x[17] = v[17];
621: x[18] = v[18];
622: x[19] = v[19];
623: x[20] = v[20];
624: x[21] = v[21];
625: x[22] = v[22];
626: x[23] = v[23];
627: x[24] = v[24];
628: x[25] = v[25];
629: x[26] = v[26];
630: x[27] = v[27];
631: x[28] = v[28];
632: x[29] = v[29];
633: x[30] = v[30];
634: x[31] = v[31];
635: x[32] = v[32];
636: x[33] = v[33];
637: x[34] = v[34];
638: x[35] = v[35];
639: x[36] = v[36];
640: x[37] = v[37];
641: x[38] = v[38];
642: x[39] = v[39];
643: x[40] = v[40];
644: x[41] = v[41];
645: x[42] = v[42];
646: x[43] = v[43];
647: x[44] = v[44];
648: x[45] = v[45];
649: x[46] = v[46];
650: x[47] = v[47];
651: x[48] = v[48];
652: v += 49;
653: }
654: row = *ajtmp++;
655: while (row < i) {
656: pc = rtmp + 49 * row;
657: p1 = pc[0];
658: p2 = pc[1];
659: p3 = pc[2];
660: p4 = pc[3];
661: p5 = pc[4];
662: p6 = pc[5];
663: p7 = pc[6];
664: p8 = pc[7];
665: p9 = pc[8];
666: p10 = pc[9];
667: p11 = pc[10];
668: p12 = pc[11];
669: p13 = pc[12];
670: p14 = pc[13];
671: p15 = pc[14];
672: p16 = pc[15];
673: p17 = pc[16];
674: p18 = pc[17];
675: p19 = pc[18];
676: p20 = pc[19];
677: p21 = pc[20];
678: p22 = pc[21];
679: p23 = pc[22];
680: p24 = pc[23];
681: p25 = pc[24];
682: p26 = pc[25];
683: p27 = pc[26];
684: p28 = pc[27];
685: p29 = pc[28];
686: p30 = pc[29];
687: p31 = pc[30];
688: p32 = pc[31];
689: p33 = pc[32];
690: p34 = pc[33];
691: p35 = pc[34];
692: p36 = pc[35];
693: p37 = pc[36];
694: p38 = pc[37];
695: p39 = pc[38];
696: p40 = pc[39];
697: p41 = pc[40];
698: p42 = pc[41];
699: p43 = pc[42];
700: p44 = pc[43];
701: p45 = pc[44];
702: p46 = pc[45];
703: p47 = pc[46];
704: p48 = pc[47];
705: p49 = pc[48];
706: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 || p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 || p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 || p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 || p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 || p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0 || p37 != 0.0 || p38 != 0.0 || p39 != 0.0 || p40 != 0.0 || p41 != 0.0 || p42 != 0.0 || p43 != 0.0 || p44 != 0.0 || p45 != 0.0 || p46 != 0.0 || p47 != 0.0 || p48 != 0.0 || p49 != 0.0) {
707: pv = ba + 49 * diag_offset[row];
708: pj = bj + diag_offset[row] + 1;
709: x1 = pv[0];
710: x2 = pv[1];
711: x3 = pv[2];
712: x4 = pv[3];
713: x5 = pv[4];
714: x6 = pv[5];
715: x7 = pv[6];
716: x8 = pv[7];
717: x9 = pv[8];
718: x10 = pv[9];
719: x11 = pv[10];
720: x12 = pv[11];
721: x13 = pv[12];
722: x14 = pv[13];
723: x15 = pv[14];
724: x16 = pv[15];
725: x17 = pv[16];
726: x18 = pv[17];
727: x19 = pv[18];
728: x20 = pv[19];
729: x21 = pv[20];
730: x22 = pv[21];
731: x23 = pv[22];
732: x24 = pv[23];
733: x25 = pv[24];
734: x26 = pv[25];
735: x27 = pv[26];
736: x28 = pv[27];
737: x29 = pv[28];
738: x30 = pv[29];
739: x31 = pv[30];
740: x32 = pv[31];
741: x33 = pv[32];
742: x34 = pv[33];
743: x35 = pv[34];
744: x36 = pv[35];
745: x37 = pv[36];
746: x38 = pv[37];
747: x39 = pv[38];
748: x40 = pv[39];
749: x41 = pv[40];
750: x42 = pv[41];
751: x43 = pv[42];
752: x44 = pv[43];
753: x45 = pv[44];
754: x46 = pv[45];
755: x47 = pv[46];
756: x48 = pv[47];
757: x49 = pv[48];
758: pc[0] = m1 = p1 * x1 + p8 * x2 + p15 * x3 + p22 * x4 + p29 * x5 + p36 * x6 + p43 * x7;
759: pc[1] = m2 = p2 * x1 + p9 * x2 + p16 * x3 + p23 * x4 + p30 * x5 + p37 * x6 + p44 * x7;
760: pc[2] = m3 = p3 * x1 + p10 * x2 + p17 * x3 + p24 * x4 + p31 * x5 + p38 * x6 + p45 * x7;
761: pc[3] = m4 = p4 * x1 + p11 * x2 + p18 * x3 + p25 * x4 + p32 * x5 + p39 * x6 + p46 * x7;
762: pc[4] = m5 = p5 * x1 + p12 * x2 + p19 * x3 + p26 * x4 + p33 * x5 + p40 * x6 + p47 * x7;
763: pc[5] = m6 = p6 * x1 + p13 * x2 + p20 * x3 + p27 * x4 + p34 * x5 + p41 * x6 + p48 * x7;
764: pc[6] = m7 = p7 * x1 + p14 * x2 + p21 * x3 + p28 * x4 + p35 * x5 + p42 * x6 + p49 * x7;
766: pc[7] = m8 = p1 * x8 + p8 * x9 + p15 * x10 + p22 * x11 + p29 * x12 + p36 * x13 + p43 * x14;
767: pc[8] = m9 = p2 * x8 + p9 * x9 + p16 * x10 + p23 * x11 + p30 * x12 + p37 * x13 + p44 * x14;
768: pc[9] = m10 = p3 * x8 + p10 * x9 + p17 * x10 + p24 * x11 + p31 * x12 + p38 * x13 + p45 * x14;
769: pc[10] = m11 = p4 * x8 + p11 * x9 + p18 * x10 + p25 * x11 + p32 * x12 + p39 * x13 + p46 * x14;
770: pc[11] = m12 = p5 * x8 + p12 * x9 + p19 * x10 + p26 * x11 + p33 * x12 + p40 * x13 + p47 * x14;
771: pc[12] = m13 = p6 * x8 + p13 * x9 + p20 * x10 + p27 * x11 + p34 * x12 + p41 * x13 + p48 * x14;
772: pc[13] = m14 = p7 * x8 + p14 * x9 + p21 * x10 + p28 * x11 + p35 * x12 + p42 * x13 + p49 * x14;
774: pc[14] = m15 = p1 * x15 + p8 * x16 + p15 * x17 + p22 * x18 + p29 * x19 + p36 * x20 + p43 * x21;
775: pc[15] = m16 = p2 * x15 + p9 * x16 + p16 * x17 + p23 * x18 + p30 * x19 + p37 * x20 + p44 * x21;
776: pc[16] = m17 = p3 * x15 + p10 * x16 + p17 * x17 + p24 * x18 + p31 * x19 + p38 * x20 + p45 * x21;
777: pc[17] = m18 = p4 * x15 + p11 * x16 + p18 * x17 + p25 * x18 + p32 * x19 + p39 * x20 + p46 * x21;
778: pc[18] = m19 = p5 * x15 + p12 * x16 + p19 * x17 + p26 * x18 + p33 * x19 + p40 * x20 + p47 * x21;
779: pc[19] = m20 = p6 * x15 + p13 * x16 + p20 * x17 + p27 * x18 + p34 * x19 + p41 * x20 + p48 * x21;
780: pc[20] = m21 = p7 * x15 + p14 * x16 + p21 * x17 + p28 * x18 + p35 * x19 + p42 * x20 + p49 * x21;
782: pc[21] = m22 = p1 * x22 + p8 * x23 + p15 * x24 + p22 * x25 + p29 * x26 + p36 * x27 + p43 * x28;
783: pc[22] = m23 = p2 * x22 + p9 * x23 + p16 * x24 + p23 * x25 + p30 * x26 + p37 * x27 + p44 * x28;
784: pc[23] = m24 = p3 * x22 + p10 * x23 + p17 * x24 + p24 * x25 + p31 * x26 + p38 * x27 + p45 * x28;
785: pc[24] = m25 = p4 * x22 + p11 * x23 + p18 * x24 + p25 * x25 + p32 * x26 + p39 * x27 + p46 * x28;
786: pc[25] = m26 = p5 * x22 + p12 * x23 + p19 * x24 + p26 * x25 + p33 * x26 + p40 * x27 + p47 * x28;
787: pc[26] = m27 = p6 * x22 + p13 * x23 + p20 * x24 + p27 * x25 + p34 * x26 + p41 * x27 + p48 * x28;
788: pc[27] = m28 = p7 * x22 + p14 * x23 + p21 * x24 + p28 * x25 + p35 * x26 + p42 * x27 + p49 * x28;
790: pc[28] = m29 = p1 * x29 + p8 * x30 + p15 * x31 + p22 * x32 + p29 * x33 + p36 * x34 + p43 * x35;
791: pc[29] = m30 = p2 * x29 + p9 * x30 + p16 * x31 + p23 * x32 + p30 * x33 + p37 * x34 + p44 * x35;
792: pc[30] = m31 = p3 * x29 + p10 * x30 + p17 * x31 + p24 * x32 + p31 * x33 + p38 * x34 + p45 * x35;
793: pc[31] = m32 = p4 * x29 + p11 * x30 + p18 * x31 + p25 * x32 + p32 * x33 + p39 * x34 + p46 * x35;
794: pc[32] = m33 = p5 * x29 + p12 * x30 + p19 * x31 + p26 * x32 + p33 * x33 + p40 * x34 + p47 * x35;
795: pc[33] = m34 = p6 * x29 + p13 * x30 + p20 * x31 + p27 * x32 + p34 * x33 + p41 * x34 + p48 * x35;
796: pc[34] = m35 = p7 * x29 + p14 * x30 + p21 * x31 + p28 * x32 + p35 * x33 + p42 * x34 + p49 * x35;
798: pc[35] = m36 = p1 * x36 + p8 * x37 + p15 * x38 + p22 * x39 + p29 * x40 + p36 * x41 + p43 * x42;
799: pc[36] = m37 = p2 * x36 + p9 * x37 + p16 * x38 + p23 * x39 + p30 * x40 + p37 * x41 + p44 * x42;
800: pc[37] = m38 = p3 * x36 + p10 * x37 + p17 * x38 + p24 * x39 + p31 * x40 + p38 * x41 + p45 * x42;
801: pc[38] = m39 = p4 * x36 + p11 * x37 + p18 * x38 + p25 * x39 + p32 * x40 + p39 * x41 + p46 * x42;
802: pc[39] = m40 = p5 * x36 + p12 * x37 + p19 * x38 + p26 * x39 + p33 * x40 + p40 * x41 + p47 * x42;
803: pc[40] = m41 = p6 * x36 + p13 * x37 + p20 * x38 + p27 * x39 + p34 * x40 + p41 * x41 + p48 * x42;
804: pc[41] = m42 = p7 * x36 + p14 * x37 + p21 * x38 + p28 * x39 + p35 * x40 + p42 * x41 + p49 * x42;
806: pc[42] = m43 = p1 * x43 + p8 * x44 + p15 * x45 + p22 * x46 + p29 * x47 + p36 * x48 + p43 * x49;
807: pc[43] = m44 = p2 * x43 + p9 * x44 + p16 * x45 + p23 * x46 + p30 * x47 + p37 * x48 + p44 * x49;
808: pc[44] = m45 = p3 * x43 + p10 * x44 + p17 * x45 + p24 * x46 + p31 * x47 + p38 * x48 + p45 * x49;
809: pc[45] = m46 = p4 * x43 + p11 * x44 + p18 * x45 + p25 * x46 + p32 * x47 + p39 * x48 + p46 * x49;
810: pc[46] = m47 = p5 * x43 + p12 * x44 + p19 * x45 + p26 * x46 + p33 * x47 + p40 * x48 + p47 * x49;
811: pc[47] = m48 = p6 * x43 + p13 * x44 + p20 * x45 + p27 * x46 + p34 * x47 + p41 * x48 + p48 * x49;
812: pc[48] = m49 = p7 * x43 + p14 * x44 + p21 * x45 + p28 * x46 + p35 * x47 + p42 * x48 + p49 * x49;
814: nz = bi[row + 1] - diag_offset[row] - 1;
815: pv += 49;
816: for (j = 0; j < nz; j++) {
817: x1 = pv[0];
818: x2 = pv[1];
819: x3 = pv[2];
820: x4 = pv[3];
821: x5 = pv[4];
822: x6 = pv[5];
823: x7 = pv[6];
824: x8 = pv[7];
825: x9 = pv[8];
826: x10 = pv[9];
827: x11 = pv[10];
828: x12 = pv[11];
829: x13 = pv[12];
830: x14 = pv[13];
831: x15 = pv[14];
832: x16 = pv[15];
833: x17 = pv[16];
834: x18 = pv[17];
835: x19 = pv[18];
836: x20 = pv[19];
837: x21 = pv[20];
838: x22 = pv[21];
839: x23 = pv[22];
840: x24 = pv[23];
841: x25 = pv[24];
842: x26 = pv[25];
843: x27 = pv[26];
844: x28 = pv[27];
845: x29 = pv[28];
846: x30 = pv[29];
847: x31 = pv[30];
848: x32 = pv[31];
849: x33 = pv[32];
850: x34 = pv[33];
851: x35 = pv[34];
852: x36 = pv[35];
853: x37 = pv[36];
854: x38 = pv[37];
855: x39 = pv[38];
856: x40 = pv[39];
857: x41 = pv[40];
858: x42 = pv[41];
859: x43 = pv[42];
860: x44 = pv[43];
861: x45 = pv[44];
862: x46 = pv[45];
863: x47 = pv[46];
864: x48 = pv[47];
865: x49 = pv[48];
866: x = rtmp + 49 * pj[j];
867: x[0] -= m1 * x1 + m8 * x2 + m15 * x3 + m22 * x4 + m29 * x5 + m36 * x6 + m43 * x7;
868: x[1] -= m2 * x1 + m9 * x2 + m16 * x3 + m23 * x4 + m30 * x5 + m37 * x6 + m44 * x7;
869: x[2] -= m3 * x1 + m10 * x2 + m17 * x3 + m24 * x4 + m31 * x5 + m38 * x6 + m45 * x7;
870: x[3] -= m4 * x1 + m11 * x2 + m18 * x3 + m25 * x4 + m32 * x5 + m39 * x6 + m46 * x7;
871: x[4] -= m5 * x1 + m12 * x2 + m19 * x3 + m26 * x4 + m33 * x5 + m40 * x6 + m47 * x7;
872: x[5] -= m6 * x1 + m13 * x2 + m20 * x3 + m27 * x4 + m34 * x5 + m41 * x6 + m48 * x7;
873: x[6] -= m7 * x1 + m14 * x2 + m21 * x3 + m28 * x4 + m35 * x5 + m42 * x6 + m49 * x7;
875: x[7] -= m1 * x8 + m8 * x9 + m15 * x10 + m22 * x11 + m29 * x12 + m36 * x13 + m43 * x14;
876: x[8] -= m2 * x8 + m9 * x9 + m16 * x10 + m23 * x11 + m30 * x12 + m37 * x13 + m44 * x14;
877: x[9] -= m3 * x8 + m10 * x9 + m17 * x10 + m24 * x11 + m31 * x12 + m38 * x13 + m45 * x14;
878: x[10] -= m4 * x8 + m11 * x9 + m18 * x10 + m25 * x11 + m32 * x12 + m39 * x13 + m46 * x14;
879: x[11] -= m5 * x8 + m12 * x9 + m19 * x10 + m26 * x11 + m33 * x12 + m40 * x13 + m47 * x14;
880: x[12] -= m6 * x8 + m13 * x9 + m20 * x10 + m27 * x11 + m34 * x12 + m41 * x13 + m48 * x14;
881: x[13] -= m7 * x8 + m14 * x9 + m21 * x10 + m28 * x11 + m35 * x12 + m42 * x13 + m49 * x14;
883: x[14] -= m1 * x15 + m8 * x16 + m15 * x17 + m22 * x18 + m29 * x19 + m36 * x20 + m43 * x21;
884: x[15] -= m2 * x15 + m9 * x16 + m16 * x17 + m23 * x18 + m30 * x19 + m37 * x20 + m44 * x21;
885: x[16] -= m3 * x15 + m10 * x16 + m17 * x17 + m24 * x18 + m31 * x19 + m38 * x20 + m45 * x21;
886: x[17] -= m4 * x15 + m11 * x16 + m18 * x17 + m25 * x18 + m32 * x19 + m39 * x20 + m46 * x21;
887: x[18] -= m5 * x15 + m12 * x16 + m19 * x17 + m26 * x18 + m33 * x19 + m40 * x20 + m47 * x21;
888: x[19] -= m6 * x15 + m13 * x16 + m20 * x17 + m27 * x18 + m34 * x19 + m41 * x20 + m48 * x21;
889: x[20] -= m7 * x15 + m14 * x16 + m21 * x17 + m28 * x18 + m35 * x19 + m42 * x20 + m49 * x21;
891: x[21] -= m1 * x22 + m8 * x23 + m15 * x24 + m22 * x25 + m29 * x26 + m36 * x27 + m43 * x28;
892: x[22] -= m2 * x22 + m9 * x23 + m16 * x24 + m23 * x25 + m30 * x26 + m37 * x27 + m44 * x28;
893: x[23] -= m3 * x22 + m10 * x23 + m17 * x24 + m24 * x25 + m31 * x26 + m38 * x27 + m45 * x28;
894: x[24] -= m4 * x22 + m11 * x23 + m18 * x24 + m25 * x25 + m32 * x26 + m39 * x27 + m46 * x28;
895: x[25] -= m5 * x22 + m12 * x23 + m19 * x24 + m26 * x25 + m33 * x26 + m40 * x27 + m47 * x28;
896: x[26] -= m6 * x22 + m13 * x23 + m20 * x24 + m27 * x25 + m34 * x26 + m41 * x27 + m48 * x28;
897: x[27] -= m7 * x22 + m14 * x23 + m21 * x24 + m28 * x25 + m35 * x26 + m42 * x27 + m49 * x28;
899: x[28] -= m1 * x29 + m8 * x30 + m15 * x31 + m22 * x32 + m29 * x33 + m36 * x34 + m43 * x35;
900: x[29] -= m2 * x29 + m9 * x30 + m16 * x31 + m23 * x32 + m30 * x33 + m37 * x34 + m44 * x35;
901: x[30] -= m3 * x29 + m10 * x30 + m17 * x31 + m24 * x32 + m31 * x33 + m38 * x34 + m45 * x35;
902: x[31] -= m4 * x29 + m11 * x30 + m18 * x31 + m25 * x32 + m32 * x33 + m39 * x34 + m46 * x35;
903: x[32] -= m5 * x29 + m12 * x30 + m19 * x31 + m26 * x32 + m33 * x33 + m40 * x34 + m47 * x35;
904: x[33] -= m6 * x29 + m13 * x30 + m20 * x31 + m27 * x32 + m34 * x33 + m41 * x34 + m48 * x35;
905: x[34] -= m7 * x29 + m14 * x30 + m21 * x31 + m28 * x32 + m35 * x33 + m42 * x34 + m49 * x35;
907: x[35] -= m1 * x36 + m8 * x37 + m15 * x38 + m22 * x39 + m29 * x40 + m36 * x41 + m43 * x42;
908: x[36] -= m2 * x36 + m9 * x37 + m16 * x38 + m23 * x39 + m30 * x40 + m37 * x41 + m44 * x42;
909: x[37] -= m3 * x36 + m10 * x37 + m17 * x38 + m24 * x39 + m31 * x40 + m38 * x41 + m45 * x42;
910: x[38] -= m4 * x36 + m11 * x37 + m18 * x38 + m25 * x39 + m32 * x40 + m39 * x41 + m46 * x42;
911: x[39] -= m5 * x36 + m12 * x37 + m19 * x38 + m26 * x39 + m33 * x40 + m40 * x41 + m47 * x42;
912: x[40] -= m6 * x36 + m13 * x37 + m20 * x38 + m27 * x39 + m34 * x40 + m41 * x41 + m48 * x42;
913: x[41] -= m7 * x36 + m14 * x37 + m21 * x38 + m28 * x39 + m35 * x40 + m42 * x41 + m49 * x42;
915: x[42] -= m1 * x43 + m8 * x44 + m15 * x45 + m22 * x46 + m29 * x47 + m36 * x48 + m43 * x49;
916: x[43] -= m2 * x43 + m9 * x44 + m16 * x45 + m23 * x46 + m30 * x47 + m37 * x48 + m44 * x49;
917: x[44] -= m3 * x43 + m10 * x44 + m17 * x45 + m24 * x46 + m31 * x47 + m38 * x48 + m45 * x49;
918: x[45] -= m4 * x43 + m11 * x44 + m18 * x45 + m25 * x46 + m32 * x47 + m39 * x48 + m46 * x49;
919: x[46] -= m5 * x43 + m12 * x44 + m19 * x45 + m26 * x46 + m33 * x47 + m40 * x48 + m47 * x49;
920: x[47] -= m6 * x43 + m13 * x44 + m20 * x45 + m27 * x46 + m34 * x47 + m41 * x48 + m48 * x49;
921: x[48] -= m7 * x43 + m14 * x44 + m21 * x45 + m28 * x46 + m35 * x47 + m42 * x48 + m49 * x49;
922: pv += 49;
923: }
924: PetscLogFlops(686.0 * nz + 637.0);
925: }
926: row = *ajtmp++;
927: }
928: /* finished row so stick it into b->a */
929: pv = ba + 49 * bi[i];
930: pj = bj + bi[i];
931: nz = bi[i + 1] - bi[i];
932: for (j = 0; j < nz; j++) {
933: x = rtmp + 49 * pj[j];
934: pv[0] = x[0];
935: pv[1] = x[1];
936: pv[2] = x[2];
937: pv[3] = x[3];
938: pv[4] = x[4];
939: pv[5] = x[5];
940: pv[6] = x[6];
941: pv[7] = x[7];
942: pv[8] = x[8];
943: pv[9] = x[9];
944: pv[10] = x[10];
945: pv[11] = x[11];
946: pv[12] = x[12];
947: pv[13] = x[13];
948: pv[14] = x[14];
949: pv[15] = x[15];
950: pv[16] = x[16];
951: pv[17] = x[17];
952: pv[18] = x[18];
953: pv[19] = x[19];
954: pv[20] = x[20];
955: pv[21] = x[21];
956: pv[22] = x[22];
957: pv[23] = x[23];
958: pv[24] = x[24];
959: pv[25] = x[25];
960: pv[26] = x[26];
961: pv[27] = x[27];
962: pv[28] = x[28];
963: pv[29] = x[29];
964: pv[30] = x[30];
965: pv[31] = x[31];
966: pv[32] = x[32];
967: pv[33] = x[33];
968: pv[34] = x[34];
969: pv[35] = x[35];
970: pv[36] = x[36];
971: pv[37] = x[37];
972: pv[38] = x[38];
973: pv[39] = x[39];
974: pv[40] = x[40];
975: pv[41] = x[41];
976: pv[42] = x[42];
977: pv[43] = x[43];
978: pv[44] = x[44];
979: pv[45] = x[45];
980: pv[46] = x[46];
981: pv[47] = x[47];
982: pv[48] = x[48];
983: pv += 49;
984: }
985: /* invert diagonal block */
986: w = ba + 49 * diag_offset[i];
987: PetscKernel_A_gets_inverse_A_7(w, shift, allowzeropivot, &zeropivotdetected);
988: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
989: }
991: PetscFree(rtmp);
993: C->ops->solve = MatSolve_SeqBAIJ_7_NaturalOrdering_inplace;
994: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_NaturalOrdering_inplace;
995: C->assembled = PETSC_TRUE;
997: PetscLogFlops(1.333333333333 * 7 * 7 * 7 * b->mbs); /* from inverting diagonal blocks */
998: return 0;
999: }
1001: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering(Mat B, Mat A, const MatFactorInfo *info)
1002: {
1003: Mat C = B;
1004: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
1005: PetscInt i, j, k, nz, nzL, row;
1006: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
1007: const PetscInt *ajtmp, *bjtmp, *bdiag = b->diag, *pj, bs2 = a->bs2;
1008: MatScalar *rtmp, *pc, *mwork, *v, *pv, *aa = a->a;
1009: PetscInt flg;
1010: PetscReal shift = info->shiftamount;
1011: PetscBool allowzeropivot, zeropivotdetected;
1013: allowzeropivot = PetscNot(A->erroriffailure);
1015: /* generate work space needed by the factorization */
1016: PetscMalloc2(bs2 * n, &rtmp, bs2, &mwork);
1017: PetscArrayzero(rtmp, bs2 * n);
1019: for (i = 0; i < n; i++) {
1020: /* zero rtmp */
1021: /* L part */
1022: nz = bi[i + 1] - bi[i];
1023: bjtmp = bj + bi[i];
1024: for (j = 0; j < nz; j++) PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2);
1026: /* U part */
1027: nz = bdiag[i] - bdiag[i + 1];
1028: bjtmp = bj + bdiag[i + 1] + 1;
1029: for (j = 0; j < nz; j++) PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2);
1031: /* load in initial (unfactored row) */
1032: nz = ai[i + 1] - ai[i];
1033: ajtmp = aj + ai[i];
1034: v = aa + bs2 * ai[i];
1035: for (j = 0; j < nz; j++) PetscArraycpy(rtmp + bs2 * ajtmp[j], v + bs2 * j, bs2);
1037: /* elimination */
1038: bjtmp = bj + bi[i];
1039: nzL = bi[i + 1] - bi[i];
1040: for (k = 0; k < nzL; k++) {
1041: row = bjtmp[k];
1042: pc = rtmp + bs2 * row;
1043: for (flg = 0, j = 0; j < bs2; j++) {
1044: if (pc[j] != 0.0) {
1045: flg = 1;
1046: break;
1047: }
1048: }
1049: if (flg) {
1050: pv = b->a + bs2 * bdiag[row];
1051: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
1052: PetscKernel_A_gets_A_times_B_7(pc, pv, mwork);
1054: pj = b->j + bdiag[row + 1] + 1; /* beginning of U(row,:) */
1055: pv = b->a + bs2 * (bdiag[row + 1] + 1);
1056: nz = bdiag[row] - bdiag[row + 1] - 1; /* num of entries inU(row,:), excluding diag */
1057: for (j = 0; j < nz; j++) {
1058: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
1059: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
1060: v = rtmp + bs2 * pj[j];
1061: PetscKernel_A_gets_A_minus_B_times_C_7(v, pc, pv);
1062: pv += bs2;
1063: }
1064: PetscLogFlops(686.0 * nz + 637); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
1065: }
1066: }
1068: /* finished row so stick it into b->a */
1069: /* L part */
1070: pv = b->a + bs2 * bi[i];
1071: pj = b->j + bi[i];
1072: nz = bi[i + 1] - bi[i];
1073: for (j = 0; j < nz; j++) PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2);
1075: /* Mark diagonal and invert diagonal for simpler triangular solves */
1076: pv = b->a + bs2 * bdiag[i];
1077: pj = b->j + bdiag[i];
1078: PetscArraycpy(pv, rtmp + bs2 * pj[0], bs2);
1079: PetscKernel_A_gets_inverse_A_7(pv, shift, allowzeropivot, &zeropivotdetected);
1080: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1082: /* U part */
1083: pv = b->a + bs2 * (bdiag[i + 1] + 1);
1084: pj = b->j + bdiag[i + 1] + 1;
1085: nz = bdiag[i] - bdiag[i + 1] - 1;
1086: for (j = 0; j < nz; j++) PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2);
1087: }
1088: PetscFree2(rtmp, mwork);
1090: C->ops->solve = MatSolve_SeqBAIJ_7_NaturalOrdering;
1091: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_NaturalOrdering;
1092: C->assembled = PETSC_TRUE;
1094: PetscLogFlops(1.333333333333 * 7 * 7 * 7 * n); /* from inverting diagonal blocks */
1095: return 0;
1096: }