Actual source code: baijsolvnat15.c
1: #include <../src/mat/impls/baij/seq/baij.h>
2: #include <petsc/private/kernels/blockinvert.h>
4: /* bs = 15 for PFLOTRAN. Block operations are done by accessing all the columns of the block at once */
6: PetscErrorCode MatSolve_SeqBAIJ_15_NaturalOrdering_ver2(Mat A, Vec bb, Vec xx)
7: {
8: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data;
9: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *adiag = a->diag, *vi, bs = A->rmap->bs, bs2 = a->bs2;
10: PetscInt i, nz, idx, idt, m;
11: const MatScalar *aa = a->a, *v;
12: PetscScalar s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15;
13: PetscScalar x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
14: PetscScalar *x;
15: const PetscScalar *b;
17: VecGetArrayRead(bb, &b);
18: VecGetArray(xx, &x);
20: /* forward solve the lower triangular */
21: idx = 0;
22: x[0] = b[idx];
23: x[1] = b[1 + idx];
24: x[2] = b[2 + idx];
25: x[3] = b[3 + idx];
26: x[4] = b[4 + idx];
27: x[5] = b[5 + idx];
28: x[6] = b[6 + idx];
29: x[7] = b[7 + idx];
30: x[8] = b[8 + idx];
31: x[9] = b[9 + idx];
32: x[10] = b[10 + idx];
33: x[11] = b[11 + idx];
34: x[12] = b[12 + idx];
35: x[13] = b[13 + idx];
36: x[14] = b[14 + idx];
38: for (i = 1; i < n; i++) {
39: v = aa + bs2 * ai[i];
40: vi = aj + ai[i];
41: nz = ai[i + 1] - ai[i];
42: idt = bs * i;
43: s1 = b[idt];
44: s2 = b[1 + idt];
45: s3 = b[2 + idt];
46: s4 = b[3 + idt];
47: s5 = b[4 + idt];
48: s6 = b[5 + idt];
49: s7 = b[6 + idt];
50: s8 = b[7 + idt];
51: s9 = b[8 + idt];
52: s10 = b[9 + idt];
53: s11 = b[10 + idt];
54: s12 = b[11 + idt];
55: s13 = b[12 + idt];
56: s14 = b[13 + idt];
57: s15 = b[14 + idt];
58: for (m = 0; m < nz; m++) {
59: idx = bs * vi[m];
60: x1 = x[idx];
61: x2 = x[1 + idx];
62: x3 = x[2 + idx];
63: x4 = x[3 + idx];
64: x5 = x[4 + idx];
65: x6 = x[5 + idx];
66: x7 = x[6 + idx];
67: x8 = x[7 + idx];
68: x9 = x[8 + idx];
69: x10 = x[9 + idx];
70: x11 = x[10 + idx];
71: x12 = x[11 + idx];
72: x13 = x[12 + idx];
73: x14 = x[13 + idx];
74: x15 = x[14 + idx];
76: s1 -= v[0] * x1 + v[15] * x2 + v[30] * x3 + v[45] * x4 + v[60] * x5 + v[75] * x6 + v[90] * x7 + v[105] * x8 + v[120] * x9 + v[135] * x10 + v[150] * x11 + v[165] * x12 + v[180] * x13 + v[195] * x14 + v[210] * x15;
77: s2 -= v[1] * x1 + v[16] * x2 + v[31] * x3 + v[46] * x4 + v[61] * x5 + v[76] * x6 + v[91] * x7 + v[106] * x8 + v[121] * x9 + v[136] * x10 + v[151] * x11 + v[166] * x12 + v[181] * x13 + v[196] * x14 + v[211] * x15;
78: s3 -= v[2] * x1 + v[17] * x2 + v[32] * x3 + v[47] * x4 + v[62] * x5 + v[77] * x6 + v[92] * x7 + v[107] * x8 + v[122] * x9 + v[137] * x10 + v[152] * x11 + v[167] * x12 + v[182] * x13 + v[197] * x14 + v[212] * x15;
79: s4 -= v[3] * x1 + v[18] * x2 + v[33] * x3 + v[48] * x4 + v[63] * x5 + v[78] * x6 + v[93] * x7 + v[108] * x8 + v[123] * x9 + v[138] * x10 + v[153] * x11 + v[168] * x12 + v[183] * x13 + v[198] * x14 + v[213] * x15;
80: s5 -= v[4] * x1 + v[19] * x2 + v[34] * x3 + v[49] * x4 + v[64] * x5 + v[79] * x6 + v[94] * x7 + v[109] * x8 + v[124] * x9 + v[139] * x10 + v[154] * x11 + v[169] * x12 + v[184] * x13 + v[199] * x14 + v[214] * x15;
81: s6 -= v[5] * x1 + v[20] * x2 + v[35] * x3 + v[50] * x4 + v[65] * x5 + v[80] * x6 + v[95] * x7 + v[110] * x8 + v[125] * x9 + v[140] * x10 + v[155] * x11 + v[170] * x12 + v[185] * x13 + v[200] * x14 + v[215] * x15;
82: s7 -= v[6] * x1 + v[21] * x2 + v[36] * x3 + v[51] * x4 + v[66] * x5 + v[81] * x6 + v[96] * x7 + v[111] * x8 + v[126] * x9 + v[141] * x10 + v[156] * x11 + v[171] * x12 + v[186] * x13 + v[201] * x14 + v[216] * x15;
83: s8 -= v[7] * x1 + v[22] * x2 + v[37] * x3 + v[52] * x4 + v[67] * x5 + v[82] * x6 + v[97] * x7 + v[112] * x8 + v[127] * x9 + v[142] * x10 + v[157] * x11 + v[172] * x12 + v[187] * x13 + v[202] * x14 + v[217] * x15;
84: s9 -= v[8] * x1 + v[23] * x2 + v[38] * x3 + v[53] * x4 + v[68] * x5 + v[83] * x6 + v[98] * x7 + v[113] * x8 + v[128] * x9 + v[143] * x10 + v[158] * x11 + v[173] * x12 + v[188] * x13 + v[203] * x14 + v[218] * x15;
85: s10 -= v[9] * x1 + v[24] * x2 + v[39] * x3 + v[54] * x4 + v[69] * x5 + v[84] * x6 + v[99] * x7 + v[114] * x8 + v[129] * x9 + v[144] * x10 + v[159] * x11 + v[174] * x12 + v[189] * x13 + v[204] * x14 + v[219] * x15;
86: s11 -= v[10] * x1 + v[25] * x2 + v[40] * x3 + v[55] * x4 + v[70] * x5 + v[85] * x6 + v[100] * x7 + v[115] * x8 + v[130] * x9 + v[145] * x10 + v[160] * x11 + v[175] * x12 + v[190] * x13 + v[205] * x14 + v[220] * x15;
87: s12 -= v[11] * x1 + v[26] * x2 + v[41] * x3 + v[56] * x4 + v[71] * x5 + v[86] * x6 + v[101] * x7 + v[116] * x8 + v[131] * x9 + v[146] * x10 + v[161] * x11 + v[176] * x12 + v[191] * x13 + v[206] * x14 + v[221] * x15;
88: s13 -= v[12] * x1 + v[27] * x2 + v[42] * x3 + v[57] * x4 + v[72] * x5 + v[87] * x6 + v[102] * x7 + v[117] * x8 + v[132] * x9 + v[147] * x10 + v[162] * x11 + v[177] * x12 + v[192] * x13 + v[207] * x14 + v[222] * x15;
89: s14 -= v[13] * x1 + v[28] * x2 + v[43] * x3 + v[58] * x4 + v[73] * x5 + v[88] * x6 + v[103] * x7 + v[118] * x8 + v[133] * x9 + v[148] * x10 + v[163] * x11 + v[178] * x12 + v[193] * x13 + v[208] * x14 + v[223] * x15;
90: s15 -= v[14] * x1 + v[29] * x2 + v[44] * x3 + v[59] * x4 + v[74] * x5 + v[89] * x6 + v[104] * x7 + v[119] * x8 + v[134] * x9 + v[149] * x10 + v[164] * x11 + v[179] * x12 + v[194] * x13 + v[209] * x14 + v[224] * x15;
92: v += bs2;
93: }
94: x[idt] = s1;
95: x[1 + idt] = s2;
96: x[2 + idt] = s3;
97: x[3 + idt] = s4;
98: x[4 + idt] = s5;
99: x[5 + idt] = s6;
100: x[6 + idt] = s7;
101: x[7 + idt] = s8;
102: x[8 + idt] = s9;
103: x[9 + idt] = s10;
104: x[10 + idt] = s11;
105: x[11 + idt] = s12;
106: x[12 + idt] = s13;
107: x[13 + idt] = s14;
108: x[14 + idt] = s15;
109: }
110: /* backward solve the upper triangular */
111: for (i = n - 1; i >= 0; i--) {
112: v = aa + bs2 * (adiag[i + 1] + 1);
113: vi = aj + adiag[i + 1] + 1;
114: nz = adiag[i] - adiag[i + 1] - 1;
115: idt = bs * i;
116: s1 = x[idt];
117: s2 = x[1 + idt];
118: s3 = x[2 + idt];
119: s4 = x[3 + idt];
120: s5 = x[4 + idt];
121: s6 = x[5 + idt];
122: s7 = x[6 + idt];
123: s8 = x[7 + idt];
124: s9 = x[8 + idt];
125: s10 = x[9 + idt];
126: s11 = x[10 + idt];
127: s12 = x[11 + idt];
128: s13 = x[12 + idt];
129: s14 = x[13 + idt];
130: s15 = x[14 + idt];
132: for (m = 0; m < nz; m++) {
133: idx = bs * vi[m];
134: x1 = x[idx];
135: x2 = x[1 + idx];
136: x3 = x[2 + idx];
137: x4 = x[3 + idx];
138: x5 = x[4 + idx];
139: x6 = x[5 + idx];
140: x7 = x[6 + idx];
141: x8 = x[7 + idx];
142: x9 = x[8 + idx];
143: x10 = x[9 + idx];
144: x11 = x[10 + idx];
145: x12 = x[11 + idx];
146: x13 = x[12 + idx];
147: x14 = x[13 + idx];
148: x15 = x[14 + idx];
150: s1 -= v[0] * x1 + v[15] * x2 + v[30] * x3 + v[45] * x4 + v[60] * x5 + v[75] * x6 + v[90] * x7 + v[105] * x8 + v[120] * x9 + v[135] * x10 + v[150] * x11 + v[165] * x12 + v[180] * x13 + v[195] * x14 + v[210] * x15;
151: s2 -= v[1] * x1 + v[16] * x2 + v[31] * x3 + v[46] * x4 + v[61] * x5 + v[76] * x6 + v[91] * x7 + v[106] * x8 + v[121] * x9 + v[136] * x10 + v[151] * x11 + v[166] * x12 + v[181] * x13 + v[196] * x14 + v[211] * x15;
152: s3 -= v[2] * x1 + v[17] * x2 + v[32] * x3 + v[47] * x4 + v[62] * x5 + v[77] * x6 + v[92] * x7 + v[107] * x8 + v[122] * x9 + v[137] * x10 + v[152] * x11 + v[167] * x12 + v[182] * x13 + v[197] * x14 + v[212] * x15;
153: s4 -= v[3] * x1 + v[18] * x2 + v[33] * x3 + v[48] * x4 + v[63] * x5 + v[78] * x6 + v[93] * x7 + v[108] * x8 + v[123] * x9 + v[138] * x10 + v[153] * x11 + v[168] * x12 + v[183] * x13 + v[198] * x14 + v[213] * x15;
154: s5 -= v[4] * x1 + v[19] * x2 + v[34] * x3 + v[49] * x4 + v[64] * x5 + v[79] * x6 + v[94] * x7 + v[109] * x8 + v[124] * x9 + v[139] * x10 + v[154] * x11 + v[169] * x12 + v[184] * x13 + v[199] * x14 + v[214] * x15;
155: s6 -= v[5] * x1 + v[20] * x2 + v[35] * x3 + v[50] * x4 + v[65] * x5 + v[80] * x6 + v[95] * x7 + v[110] * x8 + v[125] * x9 + v[140] * x10 + v[155] * x11 + v[170] * x12 + v[185] * x13 + v[200] * x14 + v[215] * x15;
156: s7 -= v[6] * x1 + v[21] * x2 + v[36] * x3 + v[51] * x4 + v[66] * x5 + v[81] * x6 + v[96] * x7 + v[111] * x8 + v[126] * x9 + v[141] * x10 + v[156] * x11 + v[171] * x12 + v[186] * x13 + v[201] * x14 + v[216] * x15;
157: s8 -= v[7] * x1 + v[22] * x2 + v[37] * x3 + v[52] * x4 + v[67] * x5 + v[82] * x6 + v[97] * x7 + v[112] * x8 + v[127] * x9 + v[142] * x10 + v[157] * x11 + v[172] * x12 + v[187] * x13 + v[202] * x14 + v[217] * x15;
158: s9 -= v[8] * x1 + v[23] * x2 + v[38] * x3 + v[53] * x4 + v[68] * x5 + v[83] * x6 + v[98] * x7 + v[113] * x8 + v[128] * x9 + v[143] * x10 + v[158] * x11 + v[173] * x12 + v[188] * x13 + v[203] * x14 + v[218] * x15;
159: s10 -= v[9] * x1 + v[24] * x2 + v[39] * x3 + v[54] * x4 + v[69] * x5 + v[84] * x6 + v[99] * x7 + v[114] * x8 + v[129] * x9 + v[144] * x10 + v[159] * x11 + v[174] * x12 + v[189] * x13 + v[204] * x14 + v[219] * x15;
160: s11 -= v[10] * x1 + v[25] * x2 + v[40] * x3 + v[55] * x4 + v[70] * x5 + v[85] * x6 + v[100] * x7 + v[115] * x8 + v[130] * x9 + v[145] * x10 + v[160] * x11 + v[175] * x12 + v[190] * x13 + v[205] * x14 + v[220] * x15;
161: s12 -= v[11] * x1 + v[26] * x2 + v[41] * x3 + v[56] * x4 + v[71] * x5 + v[86] * x6 + v[101] * x7 + v[116] * x8 + v[131] * x9 + v[146] * x10 + v[161] * x11 + v[176] * x12 + v[191] * x13 + v[206] * x14 + v[221] * x15;
162: s13 -= v[12] * x1 + v[27] * x2 + v[42] * x3 + v[57] * x4 + v[72] * x5 + v[87] * x6 + v[102] * x7 + v[117] * x8 + v[132] * x9 + v[147] * x10 + v[162] * x11 + v[177] * x12 + v[192] * x13 + v[207] * x14 + v[222] * x15;
163: s14 -= v[13] * x1 + v[28] * x2 + v[43] * x3 + v[58] * x4 + v[73] * x5 + v[88] * x6 + v[103] * x7 + v[118] * x8 + v[133] * x9 + v[148] * x10 + v[163] * x11 + v[178] * x12 + v[193] * x13 + v[208] * x14 + v[223] * x15;
164: s15 -= v[14] * x1 + v[29] * x2 + v[44] * x3 + v[59] * x4 + v[74] * x5 + v[89] * x6 + v[104] * x7 + v[119] * x8 + v[134] * x9 + v[149] * x10 + v[164] * x11 + v[179] * x12 + v[194] * x13 + v[209] * x14 + v[224] * x15;
166: v += bs2;
167: }
169: x[idt] = v[0] * s1 + v[15] * s2 + v[30] * s3 + v[45] * s4 + v[60] * s5 + v[75] * s6 + v[90] * s7 + v[105] * s8 + v[120] * s9 + v[135] * s10 + v[150] * s11 + v[165] * s12 + v[180] * s13 + v[195] * s14 + v[210] * s15;
170: x[1 + idt] = v[1] * s1 + v[16] * s2 + v[31] * s3 + v[46] * s4 + v[61] * s5 + v[76] * s6 + v[91] * s7 + v[106] * s8 + v[121] * s9 + v[136] * s10 + v[151] * s11 + v[166] * s12 + v[181] * s13 + v[196] * s14 + v[211] * s15;
171: x[2 + idt] = v[2] * s1 + v[17] * s2 + v[32] * s3 + v[47] * s4 + v[62] * s5 + v[77] * s6 + v[92] * s7 + v[107] * s8 + v[122] * s9 + v[137] * s10 + v[152] * s11 + v[167] * s12 + v[182] * s13 + v[197] * s14 + v[212] * s15;
172: x[3 + idt] = v[3] * s1 + v[18] * s2 + v[33] * s3 + v[48] * s4 + v[63] * s5 + v[78] * s6 + v[93] * s7 + v[108] * s8 + v[123] * s9 + v[138] * s10 + v[153] * s11 + v[168] * s12 + v[183] * s13 + v[198] * s14 + v[213] * s15;
173: x[4 + idt] = v[4] * s1 + v[19] * s2 + v[34] * s3 + v[49] * s4 + v[64] * s5 + v[79] * s6 + v[94] * s7 + v[109] * s8 + v[124] * s9 + v[139] * s10 + v[154] * s11 + v[169] * s12 + v[184] * s13 + v[199] * s14 + v[214] * s15;
174: x[5 + idt] = v[5] * s1 + v[20] * s2 + v[35] * s3 + v[50] * s4 + v[65] * s5 + v[80] * s6 + v[95] * s7 + v[110] * s8 + v[125] * s9 + v[140] * s10 + v[155] * s11 + v[170] * s12 + v[185] * s13 + v[200] * s14 + v[215] * s15;
175: x[6 + idt] = v[6] * s1 + v[21] * s2 + v[36] * s3 + v[51] * s4 + v[66] * s5 + v[81] * s6 + v[96] * s7 + v[111] * s8 + v[126] * s9 + v[141] * s10 + v[156] * s11 + v[171] * s12 + v[186] * s13 + v[201] * s14 + v[216] * s15;
176: x[7 + idt] = v[7] * s1 + v[22] * s2 + v[37] * s3 + v[52] * s4 + v[67] * s5 + v[82] * s6 + v[97] * s7 + v[112] * s8 + v[127] * s9 + v[142] * s10 + v[157] * s11 + v[172] * s12 + v[187] * s13 + v[202] * s14 + v[217] * s15;
177: x[8 + idt] = v[8] * s1 + v[23] * s2 + v[38] * s3 + v[53] * s4 + v[68] * s5 + v[83] * s6 + v[98] * s7 + v[113] * s8 + v[128] * s9 + v[143] * s10 + v[158] * s11 + v[173] * s12 + v[188] * s13 + v[203] * s14 + v[218] * s15;
178: x[9 + idt] = v[9] * s1 + v[24] * s2 + v[39] * s3 + v[54] * s4 + v[69] * s5 + v[84] * s6 + v[99] * s7 + v[114] * s8 + v[129] * s9 + v[144] * s10 + v[159] * s11 + v[174] * s12 + v[189] * s13 + v[204] * s14 + v[219] * s15;
179: x[10 + idt] = v[10] * s1 + v[25] * s2 + v[40] * s3 + v[55] * s4 + v[70] * s5 + v[85] * s6 + v[100] * s7 + v[115] * s8 + v[130] * s9 + v[145] * s10 + v[160] * s11 + v[175] * s12 + v[190] * s13 + v[205] * s14 + v[220] * s15;
180: x[11 + idt] = v[11] * s1 + v[26] * s2 + v[41] * s3 + v[56] * s4 + v[71] * s5 + v[86] * s6 + v[101] * s7 + v[116] * s8 + v[131] * s9 + v[146] * s10 + v[161] * s11 + v[176] * s12 + v[191] * s13 + v[206] * s14 + v[221] * s15;
181: x[12 + idt] = v[12] * s1 + v[27] * s2 + v[42] * s3 + v[57] * s4 + v[72] * s5 + v[87] * s6 + v[102] * s7 + v[117] * s8 + v[132] * s9 + v[147] * s10 + v[162] * s11 + v[177] * s12 + v[192] * s13 + v[207] * s14 + v[222] * s15;
182: x[13 + idt] = v[13] * s1 + v[28] * s2 + v[43] * s3 + v[58] * s4 + v[73] * s5 + v[88] * s6 + v[103] * s7 + v[118] * s8 + v[133] * s9 + v[148] * s10 + v[163] * s11 + v[178] * s12 + v[193] * s13 + v[208] * s14 + v[223] * s15;
183: x[14 + idt] = v[14] * s1 + v[29] * s2 + v[44] * s3 + v[59] * s4 + v[74] * s5 + v[89] * s6 + v[104] * s7 + v[119] * s8 + v[134] * s9 + v[149] * s10 + v[164] * s11 + v[179] * s12 + v[194] * s13 + v[209] * s14 + v[224] * s15;
184: }
186: VecRestoreArrayRead(bb, &b);
187: VecRestoreArray(xx, &x);
188: PetscLogFlops(2.0 * bs2 * (a->nz) - bs * A->cmap->n);
189: return 0;
190: }
192: /* bs = 15 for PFLOTRAN. Block operations are done by accessing one column at at time */
193: /* Default MatSolve for block size 15 */
195: PetscErrorCode MatSolve_SeqBAIJ_15_NaturalOrdering_ver1(Mat A, Vec bb, Vec xx)
196: {
197: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data;
198: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *adiag = a->diag, *vi, bs = A->rmap->bs, bs2 = a->bs2;
199: PetscInt i, k, nz, idx, idt, m;
200: const MatScalar *aa = a->a, *v;
201: PetscScalar s[15];
202: PetscScalar *x, xv;
203: const PetscScalar *b;
205: VecGetArrayRead(bb, &b);
206: VecGetArray(xx, &x);
208: /* forward solve the lower triangular */
209: for (i = 0; i < n; i++) {
210: v = aa + bs2 * ai[i];
211: vi = aj + ai[i];
212: nz = ai[i + 1] - ai[i];
213: idt = bs * i;
214: x[idt] = b[idt];
215: x[1 + idt] = b[1 + idt];
216: x[2 + idt] = b[2 + idt];
217: x[3 + idt] = b[3 + idt];
218: x[4 + idt] = b[4 + idt];
219: x[5 + idt] = b[5 + idt];
220: x[6 + idt] = b[6 + idt];
221: x[7 + idt] = b[7 + idt];
222: x[8 + idt] = b[8 + idt];
223: x[9 + idt] = b[9 + idt];
224: x[10 + idt] = b[10 + idt];
225: x[11 + idt] = b[11 + idt];
226: x[12 + idt] = b[12 + idt];
227: x[13 + idt] = b[13 + idt];
228: x[14 + idt] = b[14 + idt];
229: for (m = 0; m < nz; m++) {
230: idx = bs * vi[m];
231: for (k = 0; k < 15; k++) {
232: xv = x[k + idx];
233: x[idt] -= v[0] * xv;
234: x[1 + idt] -= v[1] * xv;
235: x[2 + idt] -= v[2] * xv;
236: x[3 + idt] -= v[3] * xv;
237: x[4 + idt] -= v[4] * xv;
238: x[5 + idt] -= v[5] * xv;
239: x[6 + idt] -= v[6] * xv;
240: x[7 + idt] -= v[7] * xv;
241: x[8 + idt] -= v[8] * xv;
242: x[9 + idt] -= v[9] * xv;
243: x[10 + idt] -= v[10] * xv;
244: x[11 + idt] -= v[11] * xv;
245: x[12 + idt] -= v[12] * xv;
246: x[13 + idt] -= v[13] * xv;
247: x[14 + idt] -= v[14] * xv;
248: v += 15;
249: }
250: }
251: }
252: /* backward solve the upper triangular */
253: for (i = n - 1; i >= 0; i--) {
254: v = aa + bs2 * (adiag[i + 1] + 1);
255: vi = aj + adiag[i + 1] + 1;
256: nz = adiag[i] - adiag[i + 1] - 1;
257: idt = bs * i;
258: s[0] = x[idt];
259: s[1] = x[1 + idt];
260: s[2] = x[2 + idt];
261: s[3] = x[3 + idt];
262: s[4] = x[4 + idt];
263: s[5] = x[5 + idt];
264: s[6] = x[6 + idt];
265: s[7] = x[7 + idt];
266: s[8] = x[8 + idt];
267: s[9] = x[9 + idt];
268: s[10] = x[10 + idt];
269: s[11] = x[11 + idt];
270: s[12] = x[12 + idt];
271: s[13] = x[13 + idt];
272: s[14] = x[14 + idt];
274: for (m = 0; m < nz; m++) {
275: idx = bs * vi[m];
276: for (k = 0; k < 15; k++) {
277: xv = x[k + idx];
278: s[0] -= v[0] * xv;
279: s[1] -= v[1] * xv;
280: s[2] -= v[2] * xv;
281: s[3] -= v[3] * xv;
282: s[4] -= v[4] * xv;
283: s[5] -= v[5] * xv;
284: s[6] -= v[6] * xv;
285: s[7] -= v[7] * xv;
286: s[8] -= v[8] * xv;
287: s[9] -= v[9] * xv;
288: s[10] -= v[10] * xv;
289: s[11] -= v[11] * xv;
290: s[12] -= v[12] * xv;
291: s[13] -= v[13] * xv;
292: s[14] -= v[14] * xv;
293: v += 15;
294: }
295: }
296: PetscArrayzero(x + idt, bs);
297: for (k = 0; k < 15; k++) {
298: x[idt] += v[0] * s[k];
299: x[1 + idt] += v[1] * s[k];
300: x[2 + idt] += v[2] * s[k];
301: x[3 + idt] += v[3] * s[k];
302: x[4 + idt] += v[4] * s[k];
303: x[5 + idt] += v[5] * s[k];
304: x[6 + idt] += v[6] * s[k];
305: x[7 + idt] += v[7] * s[k];
306: x[8 + idt] += v[8] * s[k];
307: x[9 + idt] += v[9] * s[k];
308: x[10 + idt] += v[10] * s[k];
309: x[11 + idt] += v[11] * s[k];
310: x[12 + idt] += v[12] * s[k];
311: x[13 + idt] += v[13] * s[k];
312: x[14 + idt] += v[14] * s[k];
313: v += 15;
314: }
315: }
316: VecRestoreArrayRead(bb, &b);
317: VecRestoreArray(xx, &x);
318: PetscLogFlops(2.0 * bs2 * (a->nz) - bs * A->cmap->n);
319: return 0;
320: }